Kommentare Sommersemester 2021
Veranstaltungsbeschreibungen in Deutsch und für englisch-sprachige Master-Veranstatungen in Englisch. Course descriptions in German and for Master courses in English.
Mathematik I für Studierendeder Physik
Dozent: apl. Prof. Dr. Thomas Filk
Zeit: 4 st., Mo 12-14, Di 14-16
Ort: HS I
Beginn: 19.04.2021
ILIAS-link
Programm:
- Topologien im Rn
- Ableitung (mehrkomponentiger) Funktionen, auch in mehreren Variablen, Ableitungsregeln
- Taylor-Entwicklung
- Gewöhnliche Differentialgleichungen
- Koordinatensysteme, speziell Polar-, Zylinder- und Kugelkoordinaten
- Integration (mehrkomponentig), Wegintegration, Flächen- und Volumenintegration, Gauß‘scher und Stokes’scher Satz
- Symmetrische Bilinearformen: Orthogonalbasen, Sylvester'scher Trägheitssatz
- Euklidische und Hermitesche Vektorräume: Skalarprodukte, Kreuzprodukt, Gram'sche Determinante
- Gram-Schmidt-Verfahren, orthogonale Transformationen, (selbst-) adjungierte Abbildungen, Spektralsatz, Hauptachsentransformation
- Affine Räume
- Fourier Analyse
- Distributionen
Vorkenntnisse:
Inhalte der Grundvorlesungen Analysis I und Lineare Algebra I
Einführende Literatur:
Experimentalphysik II (Elektromagnetismus und Optik)
Dozent: Prof. Dr. Gregor Herten
Zeit: 4 st., Mo, Mi 10-12,
Ort: Großer HS
Beginn: 19.04.2021
ILIAS-link
Programm:
Die Vorlesung Experimentalphysik II vermittelt die experimentellen Grundlagen der Elektrizität, des Magnetismus und der Optik. Im Zentrum der Vorlesung stehen Demonstrationsexperimente. Die Vorlesung wird durch Übungen begleitet.
Folgende Themen werden behandelt:
- Elektrische Ladung
- Elektrische Felder
- Gaußscher Satz und elektrisches Potential
- Kapazität
- Elektrischer Strom, Widerstand und Stromkreise
- Magnetfelder
- Strominduzierte Magnetfelder, Induktion und Induktivität
- Wechselstrom und Schwingkreise
- Maxwellgleichungen und elektromagnetische Wellen
- Geometrische Optik
- Reflexion und Brechung von Licht
- Licht als Welle: Interferenz und Beugung
Vorkenntnisse:
Experimentalphysik I
Einführende Literatur:
- W. Demtröder, Experimentalphysik 2, Elektrizität und Optik, Springer-Verlag
- Tipler / Mosca, Physik, Springer Verlag
- J. Heintze, Lehrbuch der Experimentalphysik, Band 3: Elektrizität und Magnetismus, Springer Verlag
- Bergmann / Schäfer, Lehrbuch der Experimentalphysik, Band 2, Elektromagnetismus, Verlag de Gruyter
Experimentalphysik IV (Atom-, Molekül- und Festkörperphysik)
Dozent: Prof. Dr. Tobias Schätz
Zeit: 4 st., Di 12-14, Do 8-10
Ort: Großer HS
Beginn: 20.04.2021
ILIAS-Link
Programm:
- Komplexe atomare Systeme und periodisches System
- Struktur und Eigenschaften von Molekülen
- Struktur und Eigenschaften von Festkörpern und Oberflächen
Vorkenntnisse:
Experimentalphysik I-III
Einführende Literatur:
Theoretische Physik I (Mechanik und Spezielle Relativitätstheorie)
Dozent: Prof. Dr. Harald Ita
Zeit: 4 st., Di, Do 10-12
Ort: HS I
Beginn: 20.04.2021
Vorlesungslink
ILIAS-link
Programm:
- Mechanik des Punktteilchens
- Systeme von Massenpunkten
- Bewegung in Zentralkraftfeldern
- Inertialsysteme und beschleunigte Bezugssysteme
- Symmetrien, Invarianzen und Erhaltungsgrößen
- Methode der Lagrange-Multiplikatoren
- Hamiltonsches Prinzip
- Lineare Schwingungen
- Hamilton-Mechanik
- Dynamik starrer Körper
- Spezielle Relativitätstheorie
Vorkenntnisse:
Theoretische Physik I
Einführende Literatur:
- V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer
- H. Goldstein, C.P. Poole, J.L. Safko, Klassische Mechanik, Wiley-VCH
- J. Honerkamp, H. Römer, Grundlagen der Klassischen Theoretischen Physik, Springer
- F. Kuypers, Klassische Mechanik, Wiley-VCH
- L.D. Landau, E.M. Lifshitz, Lehrbuch der Theoretischen Physik, Band I, Akademie-Verlag
- W. Nolting, Grundkurs Theoretische Physik, Band 1, 2 und 4, Springer
- H. Römer, M. Forger, Elementare Feldtheorie, VCH
Theoretische Physik III (Quantenmechanik)
Dozent: Prof. Dr. Jens Timmer
Zeit: 4 st., Mo 10-12, Do 12-14
Ort: HS I
Beginn: 19.04.2021
Programm:
- Schrödingergleichung
- Eindimensionale Probleme
- Wasserstoffatom
- Spin
- Drehimplus
- Störungstheorie
- ...
- EPR -Paradoxon und Bell'sche Ungleichungen
Vorkenntnisse:
Theoretische Physik I-II, Analysis und Lineare Algebra
Einführende Literatur:
- F. Schwabl. Quantenmechanik
- T. Fließbach. Quantenmechanik
Höhere Mathematik
Dozent/in: Prof. Dr. Andreas Buchleitner
Zeit: 4 st., Mi 12-14, Fr 10-12
Ort: HS I
Beginn: 21.04.2021
Programm:
- Funktionentheorie: Komplexe, holomorphe und meromorphe Funktionen, Laurent-Reihen. Cauchy-Riemann'sche Differentialgleichungen, Komplexe Integration, Satz von Cauchy, Satz von Liouville, Residuensatz.
- Gewöhnliche Differentialgleichungen: Existenz- und Eindeutigkeitssätze, Lipschitz-Bedingungen, Lineare Differentialgleichungen, Wronski-Determinante; homogene und inhomogene Differentialgleichungen, Matrix-Exponentialfunktion.
- Ein-dimensionale Sturm-Liouville-Probleme, Eigenwertprobleme, Orthogonalsysteme
- Spezielle Differentialgleichungen: Bessel, Hermite, Legendre, hypergeometrisch, konfluent hypergeometrisch und ihre Lösungen.
Vorkenntnisse:
Für die Vorlesung werden die Inhalte der Grundvorlesungen Analysis für Stu-dierende der Physik, Lineare Algebra I und II vorausgesetzt.
Einführende Literatur:
Experimentelle Methoden
Dozent: Prof. Dr. Karl Jakobs
Zeit: 2 st., Di 8-10
Ort: HS I
Beginn: 20.04.2021
Programm:
- Statistische Methoden der Datenanalyse
- Datenanalyse mit ROOT
- Grundlagen der Elektronik
- Digitale und analoge Messtechnik
- Grundlagen von Detektoren
Hinweis:
Die erfolgreiche Teilnahme an dieser Veranstaltung ist Voraussetzung zur Teilnahme am Physiklabor für Fortgeschrittene.
Seminar Physik: Einführung in Maschinelles Lernen
Dozenten: Dr. Michael Böhler, Prof. Dr. Markus Schumacher
Zeit: 2 st,
Vorbesprechung: via ZOOM (Link wird über ILIAS versendet)
Zeit: Termin aus Vorbesprechung Ort: Online via ZOOM
ILIAS-link
Vorkenntnisse: Basiskenntnisse PYTHON und Schulmathematik
Bemerkung: Vortrag und Präsentation eines entwickelten JUPYTER-Notebooks
Themen(vorläufig):
- Lineare Regression, Übertraining, RIDGE- und LASSO-Regularisierung
- Logistische Regression und Minimierungsalgorithmen (SDG, ADAM,..)
- Lineare/Quadratische Diskriminantenanalyse und Vergleich zu Log. Regression
- Einführung in Trees, Ensemblemethoden, Boosted Decision Trees und Ada-Boost
- Boosted Regression Trees und Gradient Boost
- Random Regression Forrests und Grid/Random-Suche für Hyperparameter
- Random Decision Forrests und k-fache Kreuzvalidierung
- Einführung in Neuronale Netzwerke (NN), Klassifizierungs-NN, Aktivierungfunktionen, Verlustfunktion
- Regressions-NN , Unterschiede zu Klassifizierungsnetzwerken, Regularisierung mit EarlyStopping
- Klassifizierungsnetzwerke und Regularisierung mit Dropout
- Regressionsnetzwerke und Regularisierung mit L2-Norm
- Convolutional Networks, Bilderkennung
Seminar Physik: Ultrakurz und ultraintensiv: Experimente mit neuartigen Lichtquellen
Dozenten: Prof. Dr. Bernd von Issendorff, Prof. Dr. Tobias Lau
Zeit: 2 st, voraussichtlich Die. 15-17
Vorbesprechung: via ZOOM am 27.04.2021 (Link über ILIAS)
ILIAS-link
Programm:
In den letzten Jahren hat es enorme Fortschritte bei der Erzeugung von sehr kurzen, hochintensiven und hochenergetischen Lichtpulsen gegeben, mit denen sich ein Viezahl neuartiger Experimente durchführen lässt.
Das Seminar gibt einen Einblick in die verschiedenen Techniken zur Erzeugung des Lichts und behandelt eine große Bandbreite aktueller Experimente, bei denen dieses Licht zum Einsatz kommt.
Themenvorschläge:
- Erzeugung von starken fs-Laserpulsen: "chirped pulse amplification"
- Erzeugung von "höheren Harmonischen" und Attosekundenpulsen
- Synchrotronstrahlung: Erzeugung und Eigenschaften
- Freie-Elektronen-Laser: Prinzip und Aufbau
- Röntgenbeugung: Untersuchung von Biomolekülen mit Synchrotronstarhlung
- Röntgenbeugung: Einzelschusscharakterisierung von Nanokristallen
- Materialbearbeitung mit fs-Pulsen
- "streaking" Messungen: direkte Abbildung des elektrischen Felds eines Lichtpulses
- XPS: Elementspezifische Materialuntersuchung
- Pump-Probe-Messungen mit fs-Pulsen: Moleküldynamik
- Starkfeldeffekte: Ionisation von Clustern mit fs-Pulsen
- Zeitaufgelöste Innerschalenionisation
- Zeitaufgelöste Holographie
- Röntgenabsorption: elementspezifische Abbildung, Anregungsdynamik
- Röntgenmikroskopie
Einführung in die Moderne Digitalelektronik
Dozent: apl. Prof. Dr. Horst Fischer
Zeit: 2 st., Mo-Fr 10-12
Ort: HS I
Übungen: Mo-Fr 14-16, CIP Pool II
Blockkurs: 26.07. - 06.08.2021
Programm:
Ziel:
Die Teilnehmenden erhalten einen Überblick über die wesentlichen Anwendungsgebiete und Methoden in der heutigen Digitalelektronik. Sie lernen an Hand von Beispielen die Konzepte und Funktionsweise digitaler Schaltkreise kennen und werden in die Programmierung von logischen Bausteinen eingeführt. In der praktischen Übung werden Logikbausteine (FPGA) selbst programmiert.
Folgende Themen werden behandelt:
- Anwendungsfelder der Digitalelektronik
- Grundlagen und logische Verknüpfungen
- Schaltkreisfamilien
- Rechenschaltungen
- programmierbare Bausteine (FPGA und CPLD)
- Zahlen und Speicher
- Automaten
- Systeme zur Datenaufzeichnung
Vorkenntnisse:
Einführende Literatur:
- Urbansk, Digitaltechnik (Springer)
- Tietze Schenk, Halbleitertechnik (Springer)
Halbleiterbauelemente / Semiconductor Devices
Dozent: PD Dr. Harald Schneider, Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Zeit: 2 st., Online-Vorlesung, empfohlene Bearbeitungszeit 25.-28.05.2021
Ort: onine
Beginn: 25.05.2021
ILIAS-link
Programm:
- Transportphänomene
- Metall-Halbleiter-Kontakt, Schottky-Diode
- p-n Übergang: Diodengleichrichter, Photodiode, LED, Laserdiode, Solarzelle
- Bipolare Transistoren, HBT
- Feldeffekt-Transistoren: JFET, MESFET, HEMT, MOSFET, FGFET
- Quantenstruktur-Bauelemente: RTD, QWIP, QCL, ICL
Vorkenntnisse:
Experimentalphysik IV (Kondensierte Materie), Vorlesung Grundlagen der Halbleiterphysik (apl. Prof. J. Wagner)
Einführende Literatur:
- S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, Wiley, 2006
- S.M. Sze, Semiconductor Devices, Wiley, 2001
Einführung in die Astrophysik
Dozent: Prof. Dr. Oskar von der Lühe
Zeit: 3 st., Mi 9-12
Ort: HS I
Übungen: 2 st. n.V.
Beginn: 21.04.2021
ILIAS-link
Programm:
Diese Vorlesung vermittelt einen Überblick über Ziele und Ergebnisse der modernen Astrophysik und über das moderne Weltbild. Themen sind die Grundlagen der physikalischen Eigenschaften der Sonne und des Planetensystems, des Aufbaus und der Entwicklung von Sternen, sowie die Grundlagen der Physik von Sternsystemen und des modernen kosmologischen Weltbildes. Die Vorlesung ist gedacht für den Studiengang Physik Bachelor im 4. Semester sowie für das Lehramt Physik.
Themen:
- Einleitung
- Koordinatensysteme
- Das Sonnensystem
- Teleskope und Instrumente
- Photometrie
- Aufbau und Entwicklung von Sternen
- Die Sonne
- Veränderliche Sterne
- Die Milchstraße
- Das Interstellare Medium
- Extragalaktische Physik
- Strukturen im Universum und Kosmologie
Vorkenntnisse:
Experimentalphysik I-III, Theoretische Physik I-III
Einführende Literatur:
- Weigert, A., Wendker, H., Wisotzki, L.: Astronomie und Astrophysik - Ein Grundkurs VCH Verlagsgesellschaft, 4. Aufl. (2004), ISBN 3-527-40358-2
- Karttunen, H., Kröger, P., Oja, H., Poutanen, M. Donner, K. J.: Fundamental Astronomy, Springer-Verlag, ISBN 3-540-17264-5
- Hanslmeier, A., Einführung in die Astronomie und Astrophysik (2. Auflage 2007), Springer ISBN 978-3-8274-1846-3
- Scheffler, H., Elsässer, H.: Physik der Sterne und der Sonne Bibliographisches Institut, ISBN 3-411-01438-5
- Unsöld, A:, Bascheck, B.: Der neue Kosmos (6. Auflage), Springer-Verlag, ISBN 3-540-64165-3
Photovoltaic Energy Conversion / Photovoltaische Energiekonversion
Dozent: Dr. Uli Würfel, Prof. Dr. Andreas Bett
Zeit: 2 st., Di 8-10
Ort: SR GMH
Übungen: nach Vereinbarung (1 st.)
Beginn: 20.04.2021
Program:
- Basic structure of solar cells
- Thermodynamic limit for the conversion of sunlight into electrical energy
- Semiconductors: density of states, Fermi energy, doping
- Generation and recombination, quasi Fermi energies
- Transport of charge carriers
- The pn-junction
- Charge carrier selectivity
- Ideal solar cells
- Real solar cells: crystalline Si solar cells
- Thin film solar cells
- Tandem and multijunction solar cells,
- Dye, organic and perovskite solar cells
Prerequisits:
Knowledge of semiconductor or solid state physics advantageous /Halbleiter- bzw. Festkörperphysik von Vorteil
Literature:
- P. Würfel, U. Würfel, Physics of Solar Cells, Wiley-VCH, 3rd Edition 2016
- M.A. Green, Solar Cells, University of New South Wales 1982
Kompakte Fortgeschrittene Theoretische Physik
Dozent: Prof. Dr. Gerhard Stock, Dr. Steffen Wolf
Zeit: 4 st., Mo, Di 10-12
Ort: SR I
Beginn: 19.04.2021
ILIAS-link
Programm:
Diese Vorlesung speziell für Lehramtsstudierende findet zum vierten Mal statt und ist für Studierende nach der neuen Prüfungsordnung (GymPO) eine Pflichtvorlesung. Empfohlen wird die Teilnahme im 4. Fachsemester. Studierende nach der alten Prüfungsordnung (WPO) können wahlweise die Theo IV oder diese Vorlesung hören. Der Schwerpunkt dieser Vorlesung ist die Quantenmechanik, allerdings bezieht sich ein Teil des Inhalts auch auf die Statistische Mechanik. Nach dem aktuellen Modulhandbuch erhalten Sie nach erfolgreicher Teilnahme an dieser Vorlesung und den begleitenden Übungen einen Leistungsnachweis. Die Kriterien werden in der Vorlesung bzw. den Übungen bekannt gegeben. Für Studierende nach der alten Prüfungsordnung kann auch ein benoteter Schein ausgestellt werden.
Vorkenntnisse:
Theoretische Physik I-III
Einführende Literatur:
Einführung in die Physikdidaktik für Studierende des Gymnasiallehramts
Dozent: JunProf. Dr. Martin Schwichow
(Veranstaltung der Pädagogischen Hochschule)
Zeit: 4 st., Di 14-16
Ort: Pädagogische Hochschule KG 3-111
Vorlesungs link
Programm:
- Physikunterricht legitimieren / Ziele
- Ziele / Lehrplan / Bildungsstandards
- Kontextorientierung und Lebensweltbezug
- Moderne Themen / didaktische Rekonstruktion
- Schülervorstellungen
- Im Physikunterricht experimentieren
- Modellmethode
- Computereinsatz im Physikunterricht
- Offener schülerorientierter problemorientierter Unterricht (Teil 1)
- Offener schülerorientierter problemorientierter Unterricht (Teil 2)
- Aufgabenkultur
- Physikunterricht evaluieren
- Interesse
- KLAUSUR
Einführende Literatur:
- Helmut F. Mikelskis (Hrsg.), Physik-Didaktik: Praxishandbuch für die Sekundarstufe I und II, Cornelsen Verlag Scriptor, 2006, 290 S.
- Silke Mikelskis-Seifert/Thorid Rabe (Hrsg.), Physik-Methodik: Handbuch für die Sekundarstufe I und II, Cornelsen Verlag Scriptor, 2007, 242 S.
Theoretical Condensed Matter Physics
Lecturer: Prof. Dr. Michael Thoss
Time: 4 + 2 st., Mo, Mi 10-12
Room: HS II
Tutorials: Fr 10-12, SR GMH, SR Westbau 2.OG
Start: 19.04.2021
ILIAS-link
Program:
- Structure of solids
- Lattice vibrations: Phonons
- Electronic structure of solids
- Electron-electron interaction, electron-phonon interaction
- Superconductivity
- Magnetism
- Transport theory
Prerequisits:
Theoretical Physics I-IV
Literature:
- M.W. Ashcroft and N.D. Mermin, Solid State Physics
- U. Rössler, Solid State Theory: An Introduction
- L. Kantorovich, Quantum Theory of the Solid State: An Introduction
- C. Kittel, Quantum Theory of Solids
Complex Quantum Systems
Lecturer: apl. Prof. Dr. Heinz-Peter Breuer
Time: 4 + 2 st., Mi, Do 12-14
Room: SR GMH
Start: 21.04.2021
Program:
- Quantum states Pure and mixed states, density matrices, quantum entropies
- Composite quantum systems Tensor product, entangled states, partial trace and reduced density matrix
- Open quantum systems Closed and open systems, dynamical maps, quantum operations, complete positivity and Kraus representation
- Dynamical semigroups and quantum master equations Semigroups and generators, quantum Markovian master equations, Lindblad theorem
- General properties of the master equation Pauli master equation, relaxation to equilibrium, correlation functions, quantum regression theorem
- Decoherence Destruction of quantum coherence through interaction with an environment, decoherence versus relaxation
- Microscopic theory System-reservoir models, Born-Markov approximation, microscopic derivation of the master equation
- Applications Quantum theory of the laser, superradiance, quantum transport, quantum Boltzmann equation
- Non-Markovian quantum dynamics Quantum memory effects, system-environment correlations, information flow, non-Markovian master equations
Prerequisites: Advanced Quantum Mechanics
Literature:
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)
- M. Hayashi, Quantum Information (Springer, Berlin, 2006)
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
- C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991)
- R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987)
Introduction to Relativistic Quantum Field Theory
Dozent: Prof. Dr. Stefan Dittmaier
Zeit: 4 st., Mo 14-16, Di 12-14
Ort: HS II
Übungen: Mi 14-16, HS II
Beginn: 21.04.2021
lecture link
ILIAS
Program:
- Quantization of scalar fields (Klein Gordon equation, classical field theory, canonical quantization, scattering theory and Feynman diagrams)
- Vector-boson fields (classical field equations, electromagnetic interactions and the gauge principle, quantization of the electromagnetic field, scalar QED and perturbative evaluation)
- Dirac fermions (basics of Lie Groups, Lorentz group and its representations, Dirac and Weyl equations, Poincare group and its representations, quantization of free Dirac fields, QED and perturbative evaluation, applications)
- Quantization with functional integrals
Prerequisits:
Quantum Mechanics, Electrodynamics and Special Relativity
Literature:
- Bjorken/Drell: "Relativistic Quantum Mechanics"
- Bjorken/Drell: "Relativistic Quantum Fields"
- Itzykson/Zuber: "Quantum Field Theory"
- Maggiore: "A Modern Introduction to Quantum Field Theory"
- Peskin/Schroeder: "An Introduction to Quantum Field Theory"
- Tung: "Group Theory in Physics"
- Weinberg: "The Quantum Theory of Fields, Vol.1: Foundations"
- Tung: "Group Theory in Physics"
- Ramond: "Field Theory: a Modern Primer"
- Tung: "Group Theory in Physics"
- Schwartz: "Quantum Field Theory and the Standard Model"
Computational Physics: Materials Science
Lecturer: Prof. Dr. Joachim Dzubiella
Time: 4 h, Di, Do 10-12
Room: SR Westbau 2.OG
Tutorials: 2 h, Di 14-16
Start: 20.04.2021
Program:
Application of computational simulation methods can help to discover or design new materials and investigate (microscopic) structure- (macroscopic) property relationships of a wide range of materials classes, such as metals, composites, nanostructures, ice/water, as well as polymers, surfactants, or colloidal dispersions. This course will introduce basic statistical concepts as well as programming and simulations techniques with particular focus on methods based on classical Hamiltonians spanning orders of length and time scales, such as Molecular Dynamics and coarse-grained Langevin Dynamics simulations. The students will become familiar with some examples for the different types of interatomic and coarse-grained potentials: e.g., Lennard-Jones, Born-Mayer, Embedded-Atom, (screened) Coulomb, Hamaker, etc. as well as bonded potentials for molecules and polymers. The course will consist of lectures and hands-on programming exercises and small projects, simulating mostly complex (interacting) fluids and molecules, using own written code.
Criteria for passing: For successfully completing the Studienleistung (SL), students must (i) obtain, at least, an average of 50% over all the tutorial sheets , (ii) not miss more than two tutorials (either digital or in presence), and (iii) present their results at least twice during the semester. The Prüfungsleistung consists of a written exam, and only the result of the written exam contributes to the Prüfungsleistung.
Prerequisits:
Basic knowledge in programming (Python, C/C++) as well as statistical mechanics.
Literature:
- Script (will be available via ILIAS)
- Book: Understanding molecular simulation from algorithms to applications. D. Frenkel and B. Smit. AP Academic Press.
- Book: Computer simulation of liquids. M. P. Allen and D. J. Tildesley. Oxford University Press. 3rd edition (2017)
- Book: Richard Lesar, Computational Material Science, Cambridge University Press
Advanced Optics and Lasers
Lecturer: apl Prof. Dr. Bernd von Issendorff
Time: 4 + 2 st., Mi, Do 10-12
Room: SR GMH
Start: 21.04.2021
ILIAS-link
Program:
In this course, we will discuss the principles of lasers and their application. We will start with the fundamentals of light-matter interaction and the basic principles of lasers. We will continue with a discussion of various laser types, ranging from narrow-bandwidth continuous wave lasers used for high-resolution spectroscopy, to ultrashort-pulsed lasers used to study nonlinear physics and light-induced dynamics on the nano- to femtosecond timescale. We will then discuss nonlinear optical phenomena such as nonlinear wavelength mixing, parametric conversion and their application in modern laser systems. Eventually, we will have an outlook on very recent laser developments. Examples are high harmonic generation, Free Electron Lasers or frequency combs.
The lecture will focus on experimental and some basic theoretical principles. The tutorials include problem sheets as well as practical exercises on different laser systems in our lab.
Summary of topics:
- Light-matter interaction
- Coherence and interference
- The laser principle
- Optical resonators
- Gaussian beam optics
- Ultra-short laser pulses
- Nonlinear optics and parametric amplification
- Recent laser developments
Prerequisits:
Experimental Physics I-IV
Literature:
- W. Lange “Laserphysik”
- Demtröder “Laserspektroskopie”
- J. Eichler & H.J. Eichler, Springer, „Laser“
- F.K. Kneubühl /M.W. Sigrist “Laser”
- D. Meschede “Optik, Licht und Laser”
- C. Ruilliere, Springer, "Femtosecond laser pulses“
Condensed Matter II: Interfaces and Nanostructures
Dozent: Prof. Dr. Günter Reiter
Zeit: 4 st., Do, Fr 8-10
Ort: HS II
Beginn: 22.04.2021
Lecture link
ILIAS
Program:
The students should get an overview over phenomena which only appear on surfaces and interfaces (e.g. how to make water running uphill?). The course deals with special structural and electronic properties of liquid and solid surfaces as well as their relevance in many fields of modern material science and nanotechnology.
Surfaces between solids and liquids can be found in most of the physical, chemical, biological and geological systems, as well as in many technological processes. Although the number of atoms or molecules at these surfaces is comparatively small, this "minority" can often dominate or even control the behavior of large (macroscopic) systems.
Topics:
- General description of interfaces: Thermodynamics and kinetics
- Interaction forces at interfaces: Short- and long range forces, ...
- Liquids and liquid interfaces: Droplets, bubbles, waves, "liquid beads"
- Solid-liquid interfaces: Hydrodynamics, capillarity, wetting, ...
- Structure of solid surfaces: Electronic processes at surfaces
- Surface processes: Adsorption/desorption, phase transitions
- Making of well defined solid surfaces: Surface reconstruction, surface transport, ...
- Growth- and decay: Epitaxy, nucleation, lattice mismatches, mechanical stress
- Organic layers and nanostructures on surfaces: Directed stucturing of surfaces at nm-scale
Prerequisits:
Experimentalphysik IV (Condensed Matter)
Literature:
- Intermolecular and Surface Forces, With Applications to Colloidal and Biological Systems, Jacob Israelachvili, Academic Press 1995 bzw. Elsevier 2008
- "Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves" von P.-G. de Gennes, F. Brochard-Wyart und D. Quéré, Springer, New York, 2004
- John A. Venables, Lecture notes on Surfaces and Thin Films
- I. Markov, Crystal Growth for Beginners, World Scientific
Hadron Collider Physics
Lecturer: Prof. Dr. Markus Schumacher
Time: 4 st., Mo, Di 10-12
Room: SR GMH
Start: 19.04.2021
ILIAS-Link
Program:
In this lecture Physics at Hadron Colliders is discussed. The focus lies on the discussion of recent physics measurements performed at the Large Hadron Collider (LHC) at CERN. They include experimental tests of the Standard Model, Higgs boson physics and searches for extensions of the Standard Model.
The Program consists of:
- Lectures (4h per week)
- Exercises / tutorials (2 h per week), including computer simulations and analysis of ATLAS physics events
Topics:
- Accelerators
- LHC detectors
- Phenomenology of pp collisions
- Structure functions, cross sections
- Particle signatures in LHC experiments
- Inelastic pp collisions
- Production of jets, test of perturbative QCD
- Physics of W and Z bosons
- The top quark and its properties
- Search for the Higgs boson, measurements of the properties of the new particle at 126 GeV
- Search for supersymmetric particles
- Search for other extensions of the Standard Model
Prerequisits:
Experimental Physics V (Nuclear and Particle Physics)
Particle Physics II (desirable)
Literature:
- F. Halzen, A.D. Martin, Quarks and Leptons, Wiley-Verlag;
- D. Griffiths, Introduction to Elementary Particles, Wiley-Verlag;
- G. Kane, A. Price (Ed.), Perspectives on LHC Physics, World Scientific;
- R.K. Ellis, W.J. Stirling und B.R. Webber, QCD and Collider Physics, Cambridge Univ. press;
- D. Green, High PT Physics at Hadron Colliders, Cambridge Univ. press;
- J.M. Campbell, J.W. Huston und W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics, Rep. Prog. Phys. 70 (2007) 89-193.
Astroparticle Physics
Lecturer: Prof. Dr. Marc Schumann, Dr. Sebastian Lindemann
Time: 4 st., Do, Fr 10-12
Room: SR I
Start: 22.04.2021
lecture-link
Program:
- The standard model of particle physics
- Conservation Rules and symmetries
- The expanding universe
- Matter, Radiation
- Dark matter
- Dark energy
- Development of structure in the early universe
- Particle physics in the stars
- Nature and sources of high energy cosmic particles
- Gamma ray and neutrino astronomy
Prerequisits:
Experimentalphysik V (Kern- und Teilchenphysik)
Literature:
tba
Low Temperature Physics
Dozent: Prof. Dr. Frank Stienkemeier
Zeit: 4 st., Mo, Di 10-12
Ort: SR II+III
Beginn: 19.04.2021
ILIAS-link
Program:
The lecture Low Temperature Physics provides an introduction to the physical principles as well as the experimental techniques for working at low temperatures and reaching extreme low temperature conditions. The following topics are covered:
- Temperature-dependent material properties (Phase diagrams and physical states, thermal expansion, friction, viscosity, thermal conductivity, electrical con-ductivity)
- Superfluidity
- Matrix and helium droplet isolation techniques
- Superconductivity
- Generation of low temperatures (refrigerators, Joule-Thompson effect, cryo-coolers)
- Measuring at low temperatures (temperature, pressure, levels of liquids, magnetic measurements, acoustic measurements, etc.)
- Cryostats (thermal insulation, materials, containers and transfer lines, etc.)
- Cold dilute samples (cold molecular beams, trapped molecules and trapped ions)
- Ultra-cold temperatures
Prerequisits:
Literature:
- Enss, Hunklinger, Low Temperature Physics, Springer (2005)
- Frank Pobell, Matter and Methods at Low Temperatures, Springer (1996)
- J.G. Weisend II, Handbook of Cryogenic Engineering, Taylor & Francis (1998)
Theory and Modeling of Materials: Superconductivity II (Microscopic Theory)
Lecturer: apl Prof. Dr. Christian Elsässer
Time: 2 + 1 st., Fr 8-10
Room: SR I, === or on-line, depending on pandemic situation ===
Start: 23.04.2021
Exercises: approx. every 2 weeks, 2 hours, dates upon appointment (1 SWS)
ECTS points: 3 (three) for attendance of lectures only; 3+2 (five) for attendance of lectures, participation in exercises, and final oral exam.
Program:
In Superconductivity 1 (WS 2020/21), the phenomenology of superconductivity has been addressed.
- Fundamental experiments: persistent current, perfect diamagnetism, isotope effect, flux quantization.
- Type-I and Type-II superconductivity.
- Phenomenological theories: London, Ginzburg-Landau, Lawrence-Doniach.
- Characteristic parameters: critical temperature T_c, critical fields and currents, penetration depth, coherence length.
In Superconductivity 2 (SS 2021), microscopic theories of superconductivity will be addressed.
- Introduction to the quantum mechanics of homogeneous superconductors; Cooper's problem.
- Electron-phonon interaction in normal metals and superconductors.
- Theory of Bardeen, Cooper and Schrieffer; the energy gap; experimental observations.
- Thermal and optical excitations; derivation of thermodynamic properties.
- Quantum mechanics of inhomogeneous superconductors.
Textbooks, e.g.:
- M. Tinkham, Introduction to Superconductivity
- W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications
- J. R. Schrieffer, Theory of Superconductivity
- A. L. Fetter, J. D. Walecka, Quantum Theory of Many-Particle Systems
Physics of Nano-Biosystems
Dozent: Prof. Dr. Thorsten Hugel (Inst. of Physical Chemistry), Dr. Thomas Pfohl
Zeit: 2 + 1 st., Do 8-10
Ort: SR I
Übungen: Do 13-14, SR I
Beginn: 22.04.2021
Program:
- Fundamental forces in Nano-Biosystems (elastic, viscous, thermal, chemical, entropic, polymerization)
- Concepts of equilibrium and non-equilibrium systems and measurements
- Jarzynski equation
- Linear and rotational molecular motors
- Molecular details of muscle function
- Optical and magnetic tweezers, AFM
- Single molecule force spectroscopy
- Single molecule fluorescence
- Concepts of nanotribology and biolubrication
Prerequisits:
Basic knowledge of statistics and optics is helpful but not mandatory.
Literature:
- Jonathon Howard: “Mechanics of Motor Proteins and the Cytoskeleton“ (2005)
- Phil Nelson: "Biological Physics: Energy, Information, Life" (2003)
- Rob Philips, Jane Kondev, Julie Theriot, Hernan Garcia: "Physical Biology of the Cell" (2012)
- Recent journal publications
Laser-based Spectroscopy and Analytical Methods
Dozent: PD Dr. Frank Kühnemann (Fraunhofer IPM)
Zeit: 2 + 1 st., Di 14-17
Ort: SR GMH
Beginn: 20.04.2021
Program:
Lasers did become a powerful tool for measurement applications in areas like industry, medicine, or environment. The current course focuses on the use of tuneable lasers to interrogate the spectral “fingerprints” of gases, liquids and solids for analytical purposes. Typical examples are air quality monitoring or process control in industry.
The lecture block in the first half of the course will give a comprehensive introduction into the following topics
- Infrared molecular spectra
- Tuneable lasers
- Spectroscopic techniques (absorption, photoacoustic spectroscopy, cavity-based methods)
- Background signals, noise and detection limits
The seminar talks in the second block will focus on the application of differ-ent spectroscopic methods for analytical tasks. At the start of the course, students will choose from a list of provided topics to prepare a talk and a short written summary. The preparation will be supported by topical literature and discussion sessions with the course staff. Duration of the talks will be appr. 30 minutes, followed by a discussion of content and presentation style.
Prerequisits:
Advanced Optics and Lasers (recommended)
Literature:
Physical Processes of Self-Assembly and Pattern Formation
Dozent: Prof. Dr. Günter Reiter
Zeit: 3 + 2 st, Do 10-11, Fr 10-12
Ort: SR GMH
Übungen: Mi 10-12, Hochhaus Seminarraum 3.OG
Beginn: 22.04.2021
Lecture link
ILIAS
Program:
Goal:
Questions about how organization and order in various systems arises have been raised since ancient times. Self‐assembling processes are common throughout nature and technology. The ability of molecules and objects to self‐assemble into supra‐molecular arrangements is an important issue in nanotechnology. The limited number of forms and shapes we identify in the objects around us represent only a small sub-set of those theoretically possible. So why don't we see more variety? To be able answering such a question we have to learn more about the physical processes responsible for self-organization and self-assembly.
Preliminary program:
"Physical laws for making compromises"
Self‐assembly is governed by (intermolecular) interactions between pre‐existing parts or disordered components of a system. The final (desired) structure is 'encoded' in the shape and properties of the basic building blocks. In this course, we will discuss general rules about growth and evolution of structures and patterns as well as methods that predict changes in organization due to changes made to the underlying components and/or the environment.
Students will learn how structural organization, i.e., the increase in internal order of a system, can lead to regular patterns on scales ranging from molecular to the macroscopic sizes. They will understand the physics of how molecules or objects put themselves together without guidance or management from an outside source.
Previous knowledge:
Experimentalphysik IV (Condensed Matter)
Literature:
- Yoon S. LEE, Self-Assembly and Nanotechnology: A Force Balance Approach, Wiley 2008
- Robert KELSALL, Ian W. HAMLEY, Mark GEOGHEGAN, Nanoscale Science and Technology, Wiley, 2005
- Richard A.L. JONES, Soft Machines: Nanotechnology and Life, Oxford University Press, USA 2008
- Philip BALL, Shapes, Flow, Branches. Nature's Patterns: A Tapestry in Three Parts, Oxford University Press, USA
- J.N. ISRAELACHVILI, Intermolecular and Surface Forces, Third Edition, Elsevier, 2011
Nano-Photonics – Optical manipulation and particle dynamics
Dozent: Prof. Dr. Alexander Rohrbach, Dr. Julian Roth
Zeit: 3 st., Di 10-13
Ort: online
Beginn: 20.04.2021
ILIAS-link
Motivation:
You think basic research and applied research cannot be well combined? You think that directing a laser pointer beam into a droplet of coffee results in infinitely complex physics, but explaining the physics therein is not good for anything? You want to learn complex physics of technologies that is of social benefit? If yes, this lecture can be interesting to you!
In this lecture you will learn
- the direct relation from the Maxwell equations and the electromagnetic force density to optical forces and optical tweezers, which allowed to control molecular processes mainly in cellular biology and medicine
- how photons transfer momentum to microscopic objects and how scattered photons transfer information about the state of the objects. In particular coherent light can encode extremely much information about the state of small objects, which, driven by thermal forces, continuously change their position and orientation relative to their environment. All this can be directly measured through µs-nm particle tracking.
- how smallest probes can interact on a molecular scale with their environment, which can be analyzed by correlations of changes in the probe’s states. In this way, the interaction of probes with living cells gives new insights into cellular diseases. This includes not only bacterial and viral infections, but also exposure of particulate matter to lung cells.
Contents
- Introduction
- Light – Carrier of Information and Actor
- Microscopy und Light Focussing
- Light Scattering
- Manipulation by Optical Forces
- Particle Tracking beyond the Uncertainty Regime
- Thermal Motion and Calibration
- Photonic Force Microscopy
- Applications in Biophysics and Medicine
- Time-Multiplexing and holographic optical traps
- Applications in Micro- and Nano-Technology
- Appendix
Theoretical Astrophysics: Stellar Structure, Evolution, and Pulsations
Dozent: PD Dr. Markus Roth
Zeit: 2 + 1 st., Mi 16-18
Ort: SR Westbau 2.OG
Beginn: 21.04.2021
ILIAS link
Program:
Screencasts of the lectures will be available for the students. Please contact Mr Roth for further details.
1. Stellar Structure and Evolution
- Stellar Structure Equations
- Physics of gas and radiation in stellar interiors
- Nuclear processes
- Stellar Models
- Stellar evolution and life-cycle
- Supernova, Neutron Stars, Black Holes
2. Stellar Pulsations
- Observations of stellar pulsations
- Linear adibatic oscillations
- Magneto-hydrodynamics
- MHD-Waves (Alfven-waves, slow and fast MHD waves)
- Helioseismology
- Asteroseismology
Prerequisits:
Introductory knowledge on astronomy and astrophysics
Literature:
- Aerts C. et al., "Asteroseismology", Springer Verlag
- Prialnik D., "Stellar Structure and Evolution", Cambridge University Press
- Spruit, H., "Essential magnetohydrodynamics for astrophysics", Lecture Notes
Cosmology
Dozent: JProf. Dr. Stefan Vogl
Zeit: 2 + 1 st., Mi 10-12
Ort: SR I
Beginn: 21.04.2021
lecture-link
Program:
- Geometry and Dynamics of the smooth Universe
- Thermal history and origin of matter
- Cosmological perturbation theory
- Structure formation and CMB
- Inflation (optional)
Prerequisits:
Special Relativity, Thermodynamics, basic knowledge of General Relativity helpful but not required
Literature:
- S. Dodelson: "Modern Cosmology", Academic Press, 2003
- Lecture Notes by D. Baumann, http://cosmology.amsterdam/education/cosmology/
- For the advanced reader: S. Weinberg: "Cosmology", Oxford University Press, 2008
Quantum Magnetism in the Nano World
Dozent: Prof. Dr. Oliver Waldmann
Time: Mo, Mi 12-14
Room: HS II
Start: 19.04.2021
lecture link ILIAS
Program:
Quantum magnetism in nanosized systems is at the forefront of modern physics because of the intriguing fundamental questions which have to be addressed and the relevance to future applications. Several experimental realizations of nanosized quantum spin systems have been exploited in the recent past, with molecular nanomagnets and artificially engineered spin structures being two most important ones. The topic also establishes excellent examples to study and understand better the basics and application of quantum mechanics, perfectly building on and enhancing previously acquired knowledge. In this lecture the basics of quantum magnetism in nanosized objects as well as current important research topics will be covered:
- What is quantum magnetism and why it's hard to reach
- Overview of conventional magnetism
- Magnetism in atoms and ions
- Ligand field theory, spin Hamiltonian
- Spin clusters and magnetic interactions between spin centers
- Experimental methods: Magnetisation, EPR, neutron scattering
- Numerical methods: diagonalization of Hamiltonian matrices
- Single-molecule magnets and quantum tunneling of the magnetisation
- Many-body quantum phenomena in nanosized spin clusters
- Quanteninformation applications
Prerequisits:
Experimental Physik, Quantum Mechanics
Literature:
- D. Gatteschi, R. Sessoli, J. Villain, "Molecular Nanomagnets" (Oxfrod University Press)
- H. Lueken, Magnetochemie (Teubner Studienbücher)
- Jülich Spring School "Magnetism goes Nano" (available online for free at http://juser.fz-juelich.de/record/44347)
- N.W. Ashcroft, N.D. Mermin, "Solid State Physics" - google
43 years in physics, looking back, a selection of subjects
Dozent: Prof. Dr. Jochum van der Bij
Zeit: 3 st., online
Ort:
Beginn:
Level: advanced to very advanced
Typical Subjects:
- Higgs
- anomalous couplings
- (anti)-gravity
- fifth force
- and more...
Computational Neuroscience
Dozent: Prof. Dr. Stefan Rotter, Prof. Dr. Carsten Mehring
Zeit: 4 st, Di, Fr 14-16
Ort: Bernstein Center Freiburg, Lecture Hall (Hansastrasse 9a, 79104 Freiburg)
Beginn: 20.04.2021
Course-Link
Registration for this course by email to birgit.ahrens@biologie.uni-freiburg.de
Program:
Mathematical concepts and methods:
- Basic probability and statistics
- Linear and nonlinear dynamical systems
- Phase plane methods
- Continuous stochastic processes and point processes
- Graphs and networks, random graphs
Models of biological neurons and networks:
- Hodgkin-Huxley theory of the action potential
- Stochastic theory of ionic channels
- Synaptic integration and spike generation
- Dynamics of spiking networks and population dynamics
- Primary visual cortex and processing of visual information
- Models of plasticity, growth and maturation
Models of biological learning and control:
- Reinforcement learning
- Adaptive Control
- Bayesian learning
- Structure learning
Literature:
A bibliography and web-links to complementary reading for each course day will be provided along with the slides of the lecture.
Simulation of Biological Neuronal Networks
Dozent: Prof. Dr. Stefan Rotter
Zeit: 2 st, Block, 1 week (date will be announced)
Ort: Bernstein Center Freiburg, Lecture Hall (Hansastrasse 9a, 79104 Freiburg)
Beginn:
Course-Link
Registration for this course by email to birgit.ahrens@biologie.uni-freiburg.de
Program:
This course covers the fundamentals of simulating networks of single-compartment spiking neuron models. We start from the concepts of a point neuron and then introduce more complex topics such as phenomenological models of synaptic plasticity, connectivity patterns and network dynamics.
Literature:
See http://www.nest-initiative.org/ for some general information and an online tutorial on the BNN simulator NEST.
Astronomisches Praktikum
Dozent: Prof. Dr. Markus Roth, Dr. Rolf Schlichenmaier
Zeit: 4 st., Kompaktkurs Ende Juli / Anfang August
Vorbesprechung: XX.05.2021, 12:00 Uhr, SR I, Hochhaus
Bei Interesse bitte eine kurze Anmeldung bis XX.04.2021 per e-mail an mroth@leibniz-kis.de
Termin: n.V.
Ort: Schauinsland-Observatorium des KIS
Maximale Teilnehmerzahl: 5
Veranstaltungs link
Programm:
Das Astronomische Praktikum findet als Kompaktkurs statt, zu Beginn der vorlesungsfreien Zeit. Alle Versuche werden im Observation Schauinsland des KIS durchgeführt.
Das Programm umfasst
- Bestimmung der Magnetfeldstärke in Sonnenflecken
- Messung der Sonnenrotationsgeschwindigkeit
- Bildrekonstruktionsverfahren
- Photometrie von Sternhaufen
- Einführung in die digitale Datenverarbeitung
Die Anleitungen sind auf der Vorlesungsseite des KIS abrufbar.
Vorkenntnisse:
Vorlesung "Einführung in die Astrophysik"
Einführende Literatur:
Unsöld & Baschek: Der neue Kosmos
Term Paper: Pandemic and (Re)Active Particles: Nonequilibrium in Complex Systems
Lecturer:Dr. Michael Bley, Prof. Dr. Joachim Dzubiella
Time: 2 st, Do 16:00-17:30
Room: online
Start: 22.04.2021
ILIAS-link
Program:
In this seminar, we will discuss how (actively) diffusing and reacting particles, responsible for pandemic spreading or structuring in active (biological) fluids, can be modelled by dynamically coupled reaction-diffusion equations. We consider in particular in this term paper how mathematically similar equations can be applied to apparently dissimilar systems on different length and time scales, in order to identify possible universal dynamic behaviour in complex reacting systems.
The course will be online and will take place on Thursdays between 4 and 5:30 pm every week starting on the 22. April 2021 for an introduction session. A combined grade is given for the oral presentation and the written documentation (max. 10 DIN-A4 pages of content excluding bibliography, cover, and table of contents). Regular participation and active contributions throughout all sessions is desired.
A representative list of topics for this term paper session is found below. The specific topics per participant are attributed during the first session on the 22. April 2021 and on ILIAS, if slots remain open. Please subscribe to HISinOne and ILIAS (limited number of slots available - registration opens on 11. April 2021, link: https://ilias.uni-freiburg.de/goto.php?target=crs_2098840&client_id=unifreiburg).
Topics:
1) Standard models for pandemic spreading – The SIR model and its variations
2) Statistics and Applications to COVID Spreading
3) Epidemic spreading modelled via Stochastic Dynamics and Reaction-Diffusion Equations
4) Reaction-Diffusion in molecular/biological Systems
5) Active (Brownian) Particles - Motility and active Changes
Term Paper: Density functional theory – Basic concepts and current applications
Lecturer: Prof. Dr. Michael Moseler, Dr. Leonhard Mayrhofer (Fraunhofer IWM)
Time: 2 st, Do 14-16
Room: online
Start: 29.04.2021
Density functional theory (DFT) has become one of the most important tools for the numerical solution of the electronic many-body Schrödinger equation. It is currently used by many material scientists for the study of complex systems containing up to several thousand atoms and electrons. This seminar ranges from the introduction of the theoretical foundations of DFT within the Hohenberg-Kohn-Sham frame work to state-of-the-art applications such as electronic structure calculation for the design of new materials or quantum molecular dynamics calculations to understand materials evolution during heating, pressurisation or sliding of materials.
Program:
- Hohenberg-Kohn-theorem and Kohn-Sham-equations
- Exchange-Correlation functionals
- Post-processing DFT: density of states, calculating spectra
- Ion transport in battery materials
- Electronic transport in nanowires
- Band gap engineering
- Electronic structure and catalysis
- Ab-initio calculations of clusters
- QM/MM-Coupling
- Quantum-informed classical potentials
- Quantum molecular dynamics of sliding interfaces