Uni-Logo

Kommentare Wintersemester 2021/22

Veranstaltungsbeschreibungen in deutsch und für englisch-sprachige Master-Veranstaltungen in englischer Sprache. Course descriptions in German and for English-taught Master courses in English.

 


Vorkurs Mathematik

Dozent: Dr. Andreas Härtel
Zeit: Blockveranstaltung ganztägig, vor Vorlesungsbeginn: Mo 19.10. - Fr 23.10.2021
Vorlesung: täglich 9-12
Übungen: nachmittags 14-17 in Gruppen
Ort: Großer HS Physik (Herrmann-Herder-Str. 3) - Lageplan


Der Vorkurs findet unter Einhaltung der Hygiene- und Abstandsregelungen in Präsenz im Goßen Hörsaal und Hörsaal I der Physik statt. Der Kurs ist ganztägig und besteht aus Vorlesung und Rechenübungen.

Registrieren Sie sich für den Kurs auf https://kosmic.uni-freiburg.de/goto_ilias_crs_8156.html ("Vorkurs Mathematik des Physikalischen Instituts").

 

Programm:

Auffrischen mathematischer Grundkenntnisse:
Rechnen, Ableiten, Integrieren, Analytische Geometrie und Lineare Algebra, Statistik und Wahrscheinlichkeitsrechnung
 

Vorkenntnisse:

keine
 

Einführende Literatur:

  • Glaeser, Der mathematische Werkzeugkasten, Elsevier (2006)
  • Heft, Mathematischer Vorkurs, Elsevier (2006)
  • Korsch, Mathematik-Vorkurs, Binomi Verlag (2004)
  • Weltner, Mathematik für Physiker (12. Auflage), Springer (2001)

 


Wissenschaftliches Programmieren

Dozent: PD Dr. Michael Walter
Zeit: 2 + 2 st., Di 10-12
Ort: HS Rundbau
5 ECTS
Beginn: 18.10.2021
ILIAS

Programm:

Einführung in das wissenschaftliche Programmieren am Beispiel der mächtigen Programmiersprache Python unter Verwendung von Jupyter notebooks. Der Kurs behandelt die Grundlagen bis hin zu numerischen Problemen mit "numeric python", dem Grafikpaket "pylab/matplotlib", numerische Integration und das symbolische Rechnen mit "sympy".
 

Voraussetzungen:

Bei Verwendung eines eigenen Rechners (empfohlen) empfiehlt sich folgende Software zu installieren:

 

Einführende Literatur:

 


Mathematik II für Studierende der Physik,
Höhere Mathematik (PO 2015)

Dozent: apl. Prof. Dr. Thomas Filk
Zeit: 4 st., Mi, Fr 12-14
Ort: HS I
9 ECTS
Beginn: 20.10.2021
ILIAS


Programm:

  • Funktionentheorie:
    Komplexe, holomorphe und meromorphe Funktionen, Laurent-Reihen. Cauchy-Riemann'sche Differentialgleichungen, Komplexe Integration, Satz von Cauchy, Satz von Liouville, Residuensatz.
  • Gewöhnliche Differentialgleichungen:
    Existenz- und Eindeutigkeitssätze, Lipschitz-Bedingungen, Lineare Differentialgleichungen, Wronski-Determinante, homogene und inhomogene Differentialgleichungen, Matrix-Exponentialfunktion.
  • Ein-dimensionale Sturm-Liouville-Probleme, Eigenwertprobleme, Orthogonalsysteme
  • Spezielle Differentialgleichungen:
    Bessel, Hermite, Legendre, hypergeometrisch, konfluent hypergeometrisch und ihre Lösungen.

 

Vorkenntnisse:

Inhalte der Grundvorlesungen Analysis I, Lineare Algebra I, Mathematik I für Studierende der Physik
 

Einführende Literatur:

 


Experimentalphysik I
(Mechanik, Gase und Flüssigkeiten)

Dozent: Prof. Dr. Tobias Schaetz
Zeit: 4 + 2 st., Mi 10-12, Do 11-13
Ort: Gr. HS
6 ECTS
Beginn: 20.10.2021
ILIAS

Programm:

  • Kinematik des Massenpunktes und Newtonsche Mechanik:
    Gleichförmige und gleichmäßig beschleunigte Bewegung, Newtonsche Gesetze, Inertialsysteme, Galilei Transformation, kinetische und potentielle Energie, Impuls
  • Mechanik starrer und deformierbarer Körper:
    Schwerpunkt, Trägheitsmomente, Steinerscher Satz, Haft-/Gleitreibung
  • Schwingungen und Wellen:
    Erzwungene und gedämpfte Schwingung, Resonanz, gekoppelte Oszillatoren, Ausbreitung von Wellen, stehende Wellen, Akustik
  • Gase und Flüssigkeiten:
    Kinetische Gastheorie, Geschwindigkeitsverteilung, Druck, Hydrostatik, Strömungen, Kontinuitätsgleichung
  • Wärmelehre und Thermodynamik:
    Wärmekapazität, Wärmetransport, innere Energie, Erster Hauptsatz der Thermodynamik, ideales Gas, adiabatische Zustandsänderung, Zweiter Hauptsatz der Thermodynamik, Entropie, Carnot Prozess, Aggregatzustände

 

Vorkenntnisse:

Schulphysik und -mathematik, Inhalte des Vorkurs Mathematik (Skript online)
 

Einführende Literatur:

  • Gerthsen, Physik, Springer-Verlag
  • Tipler, Physik, Spektrum Verlag 
  • W. Demtröder, Experimentalphysik 1, Mechanik und Wärme, Springer-Verlag
     

Experimentalphysik III
(Spezielle Relativitätstheorie, Optik und Quantenphysik)

Dozent: Prof. Dr. Giuseppe Sansone
Zeit: 4 + 2 st., Di, Mi 8-10
Ort: Gr. HS
7 ECTS
Beginn: 19.10.2021
ILIAS

Programm:

Die Vorlesung Experimentalphysik III vermittelt die experimentellen Grundlagen im Bereich der Optik, Atom- und Quantenphysik.

Folgende Themen werden behandelt:

  • Grundlagen der speziellen Relativitätstheorie: Inertialsysteme, Lorentz- Transformation, Zeitdilatation, Längenkontraktion
  • Fortgeschrittene Optik: Polarisation von Licht, Doppelbrechung, Polarisa- tionsoptik, Gaußsche Strahlen, optische Resonatoren, Laser, Grundlagen der nicht-linearen Optik
  • Quantenphysik: Quantenphänomene, Unschärferelation, Schrödinger-Gleichung, Axiome der Quantenmechanik, Bahn-Drehimpulse, Wasserstoffatom
  • Struktur einfacher atomarer Systeme, Periodensystem, Wechselwirkung Licht-Materie

 

Vorkenntnisse:

Experimentalphysik I und II
 

Einführende Literatur:

 


Experimentalphysik V
(Kern- und Elementarteilchenphysik)

Dozent: Prof. Dr. Karl Jakobs
Zeit: 4 st., Di, Do 8-10
Ort: HS I
7 ECTS
ILIAS
Beginn: 19.10.2021

Übung: 2 st, nach Vereinbarung

Programm:

  • Grundlagen von Streu- und Zerfallsprozessen
  • Eigenschaften stabiler Atomkerne
  • Zerfälle instabiler Kerne
  • Streuprobleme
  • Kernmodelle
  • Einführung zu Elementarteilchen
  • Symmetrien und Wechselwirkungen
  • Das Quarkmodell
  • Elektromagnetische Wechselwirkung
  • Quantenchromodynamik
  • Elektroschwache Wechselwirkung
  • Neuste Ergebnisse vom LHC

 

Vorkenntnisse:

Physik I-IV, Quantenmechanik


Literatur:

  • T. Mayer-Kuckuck, Kernphysik, Teubner Verlag;
  • J. Bleck-Neuhaus, Elementare Teilchen, Springer Verlag;
  • Povh, Rith, Scholz, Zetsche, Teilchen und Kerne, Springer Verlag;
  • D. Griffiths, Einführung in die Elementarteilchenphysik, Akademie Verlag.

 


Theoretische Physik II
(Elektrodynamik)

Dozent: Prof. Dr. Tanja Schilling
Zeit: 4 + 2 st., Mo, Do 10-12
Ort: HS I
7 ECTS
Beginn: 18.10.2021
ILIAS


Programm: 

  • Elektrostatik
  • Magnetostatik
  • Elektromagnetische Wellen, Optik
  • Elektrodynamik und Relativitätstheorie

 

Vorkenntnisse:

Analysis für Physiker, Lineare Algebra, Theoretische Physik I
Es wird empfohlen den begleitenden Mathematica-Kurs zu besuchen!
 

Literatur:

  • R. Jelitto, Elektrodynamik, Aula Verlag, Wiesbaden
  • D.J. Griffiths, Elektrodynamik: Eine Einführung, Pearson
  • T. Fließbach, Elektrodynamik, Spektrum
  • J. D. Jackson, Klassische Elektrodynamik, de Gruyter
     

Theoretische Physik IV
(Statistische Physik)

Dozent: Prof. Dr. Andreas Buchleitner
Zeit: 4 + 2 st., Mo 12-14, Di 10-12
Ort: HS I
8 ECTS
Beginn: 18.10.2021


Programm: 

  • Grundlagen der theoretischen Thermodynamik. Postulate und Hauptsaetze der Thermodynamik, thermodynamische Potenziale, Legendre-Transformationen; thermische und kalorische Zustandsgleichung, Maxwell-Relationen, einfache Beziehungen zwischen Materialgrößen; speziell die Zustandsgrößen und Beziehungen beim freien Gas. Zyklische Prozesse, Wirkungsgrad.
  • mikroskopische Beschreibung von thermodynamischen Gleichgewichtszuständen (Gesamtheiten).
  • Freie Quantengase: Bose-Gas, Fermi-Gas bei tiefen Temperaturen, Photonen (Planck'sche Strahlungsformel), Phononen, thermodynamische Freiheitsgrade.
  • Einführung in die Theorie der Phasenübergänge, Landau-Theorie des Phasenübergangs, kritische Exponenten.

 

Vorkenntnisse:

Theoretische Physik I-III, Analysis und Lineare Algebra
 

Anforderungen:

Für die Studienleistung zur Übung sind 50% der Übungspunkte erforderlich.
Die Prüfungsleistung besteht aus der Abschlussklausur.
 

Einführende Literatur:

  • W. Greiner, L. Neise, H. Stöcker. Thermodynamik und Statistische Mechanik
  • W. Nolting, Theoretische Physik 6: Statistische Physik

 
 


Datenanalyse für Naturwissenschaftler/innen:
Statistische Methoden in Theorie und Praxis

Dozent: Dr. Andrea Knue
Zeit: 4 + 2 st., Mo, Mi 14-16 (Mi 14-tgl.)
Ort: HS II
7 ECTS (BOK 8 ECTS)
Beginn: 18.10.2021

Programm:

Zur Einführung werden die Konzepte und Rechenmethoden der Statistik vorgestellt. Es werden die wichtigsten Wahrscheinlichkeitsverteilungen mit ihren Eigenschaften und Anwendungsbereichen diskutiert. Die "Monte-Carlo-Methode" zur Simulation von Zufallsereignissen wird besprochen.

Ein wichtiger Teil der Vorlesung behandelt die Parameterschätzung mit den Methoden der "Maximum Likelihood" und der "kleinsten Fehlerquadrate".

Im letzten Teil der Vorlesung geht es dann um den Test von statistischen Hypothesen, d.h. es wird erklärt, wie man die Signifikanz berechnet, mit der eine Hypothese akzeptiert oder zurückgewiesen wird. Außerdem wird besprochen, wie Konfidenzintervalle und Ausschlussgrenzen bestimmt werden.

Die Vorlesung wird von Übungen begleitet, in denen u. a. auch simulierte Datensätze mit dem Computer erzeugt und statistisch ausgewertet werden.
 

Vorkenntnisse:

Elementare Kenntnisse der Differential- und Integralrechnung.

 

Einführende Literatur:

  • Cowan, Statistical Data Analysis, Oxford Univ Press
  • Brandt, Datenanalyse: Mit statistischen Methoden und Computerprogrammen, Spektrum Akademischer Verlag
  • Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, Wiley VCH
  • Blobel und Lohrmann, Statistische und numerische Methoden der Datenanalyse, Teubner Verlag

 


Seminar Physik: Das dunkle Universum

Dozenten: apl. Prof. Dr. Horst Fischer, Prof. Dr. Marc Schumann
Zeit:
Ort:
4 ECTS

Themen:

 


Seminar Physik: tba

Dozenten: NN
Zeit:
Ort:
4 ECTS

Themen:

 


Fachdidaktik I: Einführung in die Fachdidaktik für Studierende des Gymnasiallehramts

Dozent: JProf. Dr. Martin Schwichow (Pädagogische Hochschule)
Zeit: 2 st., Di 16-18
Ort: PH KG 3, Raum 001
Beginn:
Link-LSF

Dieses Seminar richtet sich an Studierende im Polyvalenten 2HF Bachelor und Lehramt GymPO

Die Veranstaltung „Fachdidaktik I“ findet Onlineveranstaltung mit Online-Übung statt.

Für die Teilnahme an der Lehrveranstaltung ist es unbedingt erforderlich, dass Sie 1) einen PH-Account beantragen und 2) bis zum Beginn des Semesters dem ILIAS-Kurs „Einführung in die Physikdidaktik (FD I, Phy 470)“ für die Veranstaltung beitreten. Um dem Kurs beizutreten, müssen Sie sich mit Ihrem PH-Account in das PH-ILIAS einloggen und dort die Aufnahme beantragen. Falls Sie noch keinen PH-Account besitzen, müssen Sie diesen über HISinOne beantragen. Eine Anleitung hierzu finden Sie unter folgendem Link: https://www.face-freiburg.de/studium-lehre/im-studium/uni-lv-finden/. Bitte beantragen Sie den PH-Account zeitnah, da das Verfahren einige Tage dauern kann und der Account für die erfolgreiche Teilnahme an der Veranstaltung unabdingbar ist.

Bei Fragen zur Veranstaltung wenden Sie sich bitte an Herrn Schwichow martin.schwichow@ph-freiburg.de.

 


Fachdidaktik II: Digitale Medien für den Physikunterricht sprachsensibel gestalten

Dozent: JProf. Dr. Martin Schwichow (Pädagogische Hochschule)
Zeit: 2 st., Di 14-16
Ort: PH KG 3, Raum 001
Beginn:
Link-LSF

Dieses Seminar richtet sich an Studierende im Polyvalenten 2HF Bachelor und Lehramt GymPO

Die Veranstaltung „Fachdidaktik II“ findet als Hybridveranstaltung sowohl mit Phasen der Anwesenheit als auch des Onlinelernens statt.

Für die Teilnahme an der Lehrveranstaltung ist es unbedingt erforderlich, dass Sie 1) einen PH-Account beantragen und 2) bis zum Beginn des Semesters dem ILIAS-Kurs „Diagnostizieren und Fördern im sprachsensiblen Physikunterricht (FD II PHY 520)“ für die Veranstaltung beitreten. Um dem Kurs beizutreten, müssen Sie sich mit Ihrem PH-Account in das PH-ILIAS einloggen und dort die Aufnahme beantragen. Falls Sie noch keinen PH-Account besitzen, müssen Sie diesen über HISinOne beantragen. Eine Anleitung hierzu finden Sie unter folgendem Link: https://www.face-freiburg.de/studium-lehre/im-studium/uni-lv-finden/. Bitte beantragen Sie den PH-Account zeitnah, da das Verfahren einige Tage dauern kann und der Account für die erfolgreiche Teilnahme an der Veranstaltung unabdingbar ist.

Bei Fragen zur Veranstaltung wenden Sie sich bitte an Herrn Schwichow martin.schwichow@ph-freiburg.de.

 


Kontextorientierung und Physik im Alltag

Dozent: JProf. Dr. Martin Schwichow & Dozenten des Physikalischen Instituts
Zeit: 2 st., Do 14-16
Ort: zunächst online
Beginn:

Dieses Seminar richtet sich an Studierende im M.Ed.

 


Fachdidaktik der Physik der Kursstufe

Dozent: Dr. Jens Wilbers (Pädagogische Hochschule)
Zeit: 2 st., Mo 12-14
Ort: PH KG 3-111
Beginn:
Link-LSF

Dieses Seminar richtet sich an Studierende im M.Ed.

Die Veranstaltung „Fachdidaktik der Physik der Kursstufe“ findet als Hybridveranstaltung sowohl mit Phasen der Anwesenheit als auch des Onlinelernens statt. Sie müssen sich daher montags von 12:15 Uhr bis 13:45 Uhr für die Teilnahme an der Veranstaltung freihalten.

Am Montag, den 02. November, findet von 12:15 Uhr bis 13:45 Uhr eine verpflichtende Vorbesprechung in Raum 111 des KG 3 der PH Freiburg statt.

Für die Teilnahme an der Lehrveranstaltung ist es unbedingt erforderlich, dass Sie 1) einen PH-Account beantragen und 2) bis zum Beginn des Semesters dem ILIAS-Kurs „PHY 630 Didaktik der Modernen Physik/Didaktik der Kursstufe“ für die Veranstaltung beitreten. Um dem Kurs beizutreten, müssen Sie sich mit Ihrem PH-Account in das PH-ILIAS einloggen und dort die Aufnahme beantragen. Falls Sie noch keinen PH-Account besitzen, müssen Sie diesen über HISinOne beantragen. Eine Anleitung hierzu finden Sie unter folgendem Link: https://www.face-freiburg.de/studium-lehre/im-studium/uni-lv-finden/. Bitte beantragen Sie den PH-Account zeitnah, da das Verfahren einige Tage dauern kann und der Account für die erfolgreiche Teilnahme an der Veranstaltung unabdingbar ist.

Bei Fragen zur Veranstaltung wenden Sie sich bitte an Herrn Dr. Wilbers jens.wilbers@ph-freiburg.de .

 


Advanced Quantum Mechanics

Lecturer: apl. Prof. Dr. Heinz-Peter Breuer
Time: 4 + 3 st., Mi, Fr 10-12
Room: HS I
10 ECTS
Start: 20.10.2021
ILIAS


Program:

  • Recapitulation of basic quantum mechanical principles
  • Approximation methods
  • Theory of angular momentum
  • Many-particle systems
  • Dynamics of quantum systems
  • Relativistic quantum mechanics


Prerequisites

Theoretical Physics I-IV


Literature:

  • J.J. Sakurai, Modern Quantum Mechanics
  • F. Schwabl, Quantum Mechanics
  • W. Greiner, Quantum Mechanics: An Introduction
  • C. Cohen-Tannoudji, Quantum Mechanics 1+2
  • D. J. Tannor, Introduction to Quantum Mechanics

 


Introduction to General Relativity

Lecturer: Prof. Dr. Stefan Dittmaier, Dr. Max Stahlhofen
Time: 4 + 3 st., Do 10-12, Fr 14-16
Room: Do SR I, Fr HS I
9 ECTS
Start: 21.10.2021
Tutorials: Mo 14-16, SR
Link: https://www.tep.physik.uni-freiburg.de/lectures/art-ws21
ILIAS
 

 

Program:

  • Equivalence principles: Minkowski space, Poincare group, space-time diagrams, world lines, proper time and distance, application to simple phenomena (elevator thought experiments, twin paradox, relativistic Doppler effect, accelerated systems), Lorentz transformations and general coordinate transformations.
  • Differential geometry: manifolds and tangent spaces, forms, metric tensor, integration, Stoke’s theorem, outer derivative, Lie derivative, covariant derivative and Christoffel symbols, parallel transport, geodesics, curvature (Riemann tensor, Weyl tensor, Ricci tensor and scalar), torsion, Killing vectors, Riemann coordinates.
  • Dynamics of the gravitational field: Einstein equations, cosmological constant, energy-momentum tensor of matter systems (perfect fluids, point particles, Klein-Gordon and Maxwell theory).
  • Effects based on post-Newtonian approximations: red/blue shift effects, rotation of the perihel, effect of gravitation on clocks, deflection of light.
  • Gravitational waves: perturbative expansion of field equations, gauge invariance, origin and detection of gravitational waves.
  • Classical space times: Minkowski, Rindler, Schwarzschild, Kerr, Reissner-Nordstrøm, Kerr-Newman geometries; Robertson-Walker metrics, Friedmann universes and deSitter space. Discussion of causal structure, geodesic completeness, key coordinate systems and Carter-Penrose diagrams.
  • Optional: Einstein-Hilbert action and variational principle.
  • Optional: Modern topics in cosmology: CMB, the Inflation Model.

 

Prerequisits:

Electrodynamics, special relativity, Lagrangian mechanics


Literature:


 


Theoretical Quantum Optics

Lecturer: Dr. Edoardo Carnio, Prof. Dr. Andreas Buchleitner
Time: 4 + 2 st., Mi, Do 14-16
Room: HS I
9 ECTS
Start: 20.10.2021
Tutorials: n.V.
ILIAS


Program:

  1. Introduction
  2. Quantum mechanics
    Hilbert space, operators, states, Schrödinger-, Heisenberg- and interaction picture
  3. Quantized electromagnetic field
    classical field, quantisation, coherent states, squeezed states, phase space representation, field correlations, photon counting statistics
  4. Light-matter interaction: general overview
    emission, absorption, scattering, multi-photon processes, radiation corrections, interaction induced by photon exchange 
  5. Coherent interaction of a two-level atom with a single field mode
    Bloch representation, Jaynes-Cummings model, Rabi oscillations, dressed states
  6. Incoherent interaction of a two-level atom with the electromagnetic continuum
    master equation, spontaneuous emission, optical Bloch equations, quantum regression theorem, resonance fluorescence

 

Prerequisits:

Theoretical Physics I - IV
 

Literature:

  • C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon-Interactions
  • L. Mandel, E. Wolf, Optical coherence and quantum optics
  • R. Loudon, The quantum theory of light
  • R. J. Glauber, Quantum theory of optical coherence

 


Classical Complex Systems

Lecturer: Prof. Dr. Joachim Dzubiella
Time: 4 + 2 st., Di, Do 12-14
Room: SR Westbau 2. OG
9 ECTS
Start: 19.10.2021
Tutorials: n.V.
ILIAS
 

Programme:

Complex systems are composed of many interacting or reacting elements with stochastic components and are found essentially everywhere, ranging, for example, from dense liquids in condensed matter physics to molecular reactions in chemistry and biology, up to macroscopic predator-prey populations, pandemic spreading and markets in economics. This lecture introduces selected statistical tools and numerical approaches to study and describe the physics of the complex phenomena in classical (non-quantum) many-body systems, with a particular focus on the mesoscale modeling of macromolecular liquids, their structure-property relations, diffusive processes and kinetics, and applications to molecular reactions and nonlinear systems. After an introduction to the statistical mechanics of interacting systems and stochastic processes, generally applicable statistical theories such as Langevin and Master equation approaches as well as basic computational strategies such as Monte-Carlo (MC) and Brownian Dynamics (BD) simulations will be discussed. The lessons are accompanied by analytical as well as numerical exercises. The latter provide a hands- on implementation of the stochastic (MC and particle-based reaction-diffusion) simulation methods, with applications to structure and dynamics of interacting systems as well as (molecular) reaction kinetics.
 

Prerequisits:

Basic knowledge in programming (C, C++, Python) as well as statistical mechanics
 

Literature:

  • Lecture notes (on ILIAS)
  • K. A. Dill and S. Bromberg, Molecular Driving Forces
  • R. Zwanzig: Nonequilibrium Statistical Mechanics
  • N.G. van Kampen: Stochastic processes in Physics and Chemistry
  • M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. 3Rd edition (2017)
  • Smit & Frenkel, Understanding Molecular Simulations
  • J.P. Hansen, I.R. McDonald "Theory of Simple Liquids" (digital access is available through the library)

 


Particle Detectors

Lecturer: Prof. Dr. Gregor Herten
Time: 4 st., Di, Do 10-12
Room: SR GMH
9 ECTS
Start: 19.10.2021
Tutorials: 2 st, n.V.
ILIAS

Programme:

In this lecture the principles of particle detection, the basic measurement concepts and technical realisations are presented. After the discussion of individual detector components and detection principles, complete, large-scale detector systems in particle and astro-particle physics are discussed. In addition, some selected applications in medical imaging and other areas are presented.

Topics:

  • Basic interactions of charged and neutral particles
  • Measurement of ionisation
  • Position and momentum measurements
  • Time measurements
  • Energy measurement in calorimeters
  • Particle identification
  • Detector systems in particle and astro-particle physics
  • Selected applications in other areas
     

Prerequisits:

Bachelor studies, Experimental Physics V (Nuclear and Particle Physics)
 

Literature:

  • H. Kolanoski und N. Wermes, Teilchendetektoren, Springer Verlag
  • K. Kleinknecht, Detectors for Particle Radiation, Cambridge University Press, 2nd edition (2008)
  • W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer Verlag
  • C. Grupen, Teilchendetektoren, BI Wissenschaftsverlag

 


Advanced Atomic and Molecular Physics

Lecturer: Prof. Dr. Frank Stienkemeier
Time: 4 st., Di, Do 10-12
Room: HS II
9 ECTS
Start: 19.10.2021
ILIAS

Program:

(0)  Atomic energy levels

  • one-electron atoms, two-electron atoms, many-electron atoms
  • fine structure, hyperfine structure
  • Zeeman effect, Stark effect
     

(1)  Molecular energy levels

  • electronic, vibrational and rotational states of diatomic and polyatomic molecules
  • molecular Rydberg states
     

(2)  Molecular spectroscopy

  • time-resolved vs frequency-resolved spectroscopy
  • molecular transitions and selection rules
  • measurable quantities in spectroscopy
  • applications of group theory to molecular spectroscopy
     

(3)  Atomic and molecular interactions and collisions

  • interatomic and intermolecular interactions
  • basic concepts of collision theory
  • probing molecular structure in collision experiments
     

(4)  Modern techniques in atomic and molecular physics

  • ultracold atoms: laser cooling, Bose Einstein condensation
  • optical lattices and atomic clocks
  • cold molecules
  • trapping of atoms, molecules and ions

 

Prerequisits:

Experimental Physics I-IV
 

Literature:

  • W. Demtröder, Atoms, Molecules and Photons
  • P. Atkins, Molecular Quantum Mechanics
  • I. V. Hertel and C.-P. Schulz, Atoms, Molecules and Optical Physics Vol. 1+2

 


Advanced Particle Physics

Lecturer: Prof. Dr. Markus Schumacher
Time: 4 + 2 st., Mo 10-12, Mi 14-16
Room: Mo HS II, Mi SR GMH
9 ECTS
Start: 18.10.2021
ILIAS

Program:

  • Introduction
    (recapitulation of notation, relativistic kinematics, natural units, particle content of Standard Model, forces, Feynman diagrams, conservation laws)
  • The electromagnetic interaction: Quantum electrodynamics (QED)
    (QED as first local gauge theory, gauge principle, Lagrangian formulation, renormalisation, running coupling, experimental tests)
  • The strong interaction: Quantum Chromodynamics (QCD)
    (QCD as non abelian gauge theory, phenomenology, experimental tests)
  • From the weak interaction to the electroweak Standard Model
    (parity violation, CP violation, electroweak „unification“, phenomenology, experimental tests)
  • The Brout-Englert-Higgs mechanism in the Standard Model
    (theory, phenomenology and experimental tests)
  • Neutrino physics
    (masses, oscillations, Dirac vs. Majorana nature , theory and experimental status)
  • Limitations of the Standard Model


Building on the knowledge acquired in the course Experimental Physics V (Kerne und Teilchen), the Standard Model of particle physics is discussed in detail. The fundamental concepts, the phenomenological consequences, and experimental tests are presented. Students will also learn how to evaluate simple Feynman diagrams. Limitations of the Standard Model, which motivate the search for extensions will be discussed at the end. The lectures are complemented by exercises, including computer simulations, with the aim to provide a solid foundation in experimental particle physics.
 

Prerequisits:  Experimentalphysik V, Kern- und Teilchenphysik

Literature:

  • F.Halzen und A.D.Martin, Quarks & Leptons, Wiley-Verlag.
  • P. Schmüser, Feynman-Graphen und Eichtheorien für Experimentalphysiker, Springer-Verlag.
  • D. Griffiths, Introduction to Elementary Particles, Wiley-VCH-Verlag.
  • M. Thomson, Modern Particle Physics, Cambridge University Press.

 


Advanced Condensed Matter I: Solid State Physics

Lecturer: Prof. Dr. Oliver Waldmann
Time: 4 + 2 st., Di, Mi 12-14
Room: HS II
9 ECTS
Start: 19.10.2021
Tutorials: Fr 12-14, HS II
ILIAS

Program:

  • Atomic structure of matter
  • lattice dynamics, phonons
  • electronic structure of materials
  • optical properties
  • magnetism/superconductivity

 

Prerequisits:  Experimentalphysik I-III

Literature:

  • tba

 


Experimental Polymer Physics

Lecturer: Prof. Dr. Günter Reiter
Time: Do, Fr 8-10
Room: HS II
9 ECTS
Start: 21.10.2021
ILIAS
Lecture link


Program:

We can't imagine life and technology today without polymers, if you think of materials like PET bottles and PVC, nylon, teflon or rubber. Also in nature biopolymers are ubiquitous, e.g. DNA, proteins or cellulose. This lecture will give an introduction into the experimental and theoretical concepts in understanding and characterisation of polymer systems. Both, applied and material aspects will be discussed - like polymer flow, elastomers and crystalline polymers - as well as present topics of fundamental research, e.g. glass transition, dynamics in confined geometries and self assembly. The lecture will deal with basic theoretical concepts and descriptive experiments. It will start with simple single chain phenomena and step by step develop more complex structures and dynamics of polymer solutions, melts and blends.
 

Prerequisits:

Grundvorlesungen und etwas Thermodynamik

 

Literature:

  • G. Strobl, The Physics of Polymers
  • Colby & Rubinstein, Polymer Physics

 


Biomolecular Simulations

Lecturer: PD Dr. Steffen Wolf
Time: 4 + 2 st., Mo 10-12, Mi 14-16
Room: SR I
Start: 18.10.2021
Exercises (Computer Lab): 2 st., n.V.
ILIAS
 

Preliminary Program:

I. Biomolecules

  • Building blocks of life
  • Structure of proteins
  • Proteins in motion
  • Molecular Function
     

II. Classical and statistical mechanics

  • From quantum to classical mechanics
  • Statistical description and probability
  • Stochastic processes
  • Emergent complexity of dynamics
     

III. Computer simulations

  • What to calculate?
  • Monte-Carlo method
  • Molecular dynamics simulations
  • Sampling problem
  • The force field
  • Time-dependent phenomena
  • Analysis techniques
     

IV. Applications

  • The miracles of liquid water
  • Protein Folding
  • How do proteins recognize each other
  • Mutations and their consequences
  • Drugs at work

 

Literature:

  • I. Bahar, R. Jernigan, K. Dill: Protein Actions
  • H.J.C. Berendsen: Simulating the Physical World
  • D. Frenkel, B. Smit: Understanding Molecular Simulation

 


Numerical recipes for physicists

Dozent: JProf. Dr. Stefan Vogl
Zeit: 3 st., Mo 12-14
Ort: HS II
5 ECTS
Beginn: 18.10.2021
Course-Link
ILIAS

Programme:

Only highly idealized problems can be solved analytically. The solution to all realistic problems rely on numerical methods and their implementation on a computer. This course introduces some of the most important numerical methods and their application in physics.

  • Errors and uncertainties
  • Integration
  • Differentiation
  • Root finding
  • Ordinary differential equations
  • Partial differential equations

 

Preliminaries/Previous knowledge:

None beyond the requirements for the Master’s program in Physics, basic programming skills and interest in problem solving with a computer helpful
 

Literature:

  • R. Landau: "Computational physics", Wiley-VCH, 2007

 


Grundlagen der Halbleiterphysik / Fundamentals of Semiconductors & Optoelectronics

Dozent: apl. Prof. Dr. Joachim Wagner (Fraunhofer ISE), Prof. Dr. Andreas Bett (Fraunhofer ISE)
Zeit: 3 st., Fr 8-10
Ort: SR GMH
5 ECTS
Beginn: 22.10.2021
ILIAS

Programme:

  • Inorganic crystalline semiconductor materials (such as Si and GaAs)
  • Fabrication of bulk semiconductor crystals and epitaxial layers
  • Electronic band structure, tight-binding vs. nearly free electron approach
  • Effective mass of electrons and holes, n- and p-type doping
  • Density of states, statistics of electrons and holes • Electrical transport by electrons and holes, electric fields and currents
  • Quantization effects in semiconductors, quantum films and superlattices
  • p-n-junction, photodiode, light emitting diode (LED), diode laser

 

Preliminaries/Previous knowledge:

Solid-state physics and theoretical physics at the level of a BSc in Physics
 

Literature:

  • H. Ibach, H. Lüth, „Festkörperphysik" (Springer, 2009)
  • K. Seeger, „Semiconductor Physics“ (Springer, 2004)
  • P. Yu, M. Cardona, „Fundamentals of Semiconductors“ (Springer, 2010)

 


Multi-junction solar cell technology and concentrator photovolatic

Dozent: Prof. Dr. Andreas Bett (Fraunhofer ISE)
Zeit: 2 st., Mo 14-16
Ort: SR GMH
3 ECTS
Beginn: 18.10.2021
ILIAS

Programme:

  • multi-junction solar cell approach to increase the sunlight conversion efficiency, different solar cell architectures/li>
  • introduction III-V materials, adjustment of band-gap, growth techniques/li>
  • methods for charaterisation of III-V materials and multi-junction solar cells/li>
  • PV concentrator technology: low and high concentration/li>
  • componentes of CPV systems: optics, cells, manufacturing/li>
  • CPV system analysis including an economical evalution

 

Preliminaries/Previous knowledge:

 

Literature:

  • "Solar Cells and Their Applications", L. Fraas, L.Partain, Wiley, 2010;
  • "Advanced Concetps in Photovoltaics", AJ Nozik, G. Conibeer, MC Beard, Royal Society of Chemistry, 2014;
  • "Next Generation Photovoltaics", AB Cristobal Lopez, A. Marti Vega, A. Luque Lopez, Springer Series in Optical Sciences 165, 2012,
  • "Concentrator Phtovoltaics", A Luque, V. Andreev, Springer Verlag, Series in Optical Sciences, 2011

 

 


High Resolution in Astrophysics

Dozent: Prof. Dr. Oskar von der Lühe
Time: 2 + 1 st., Mi 14-16
Room: SR Kiepenheuer-Institut, Schöneckstr. 6
5 ECTS
Beginn: 20.10.2021

Programme:

The lecture is targeted at students of the Master's curriculum in physics.
 

Prerequisits:

Experimental Physics I – IV.
Completion of an introductory course on astro-physics (e. g. bachelor course) is highly recommended.
 

Literature:

 


Theoretical Astrophysics I: Stars and Planets

Dozent: Prof. Dr. Svetlana Berdyugina (svetlana.berdyugina@kis.uni-freiburg.de)
Zeit: 2 + 2 st, Do 14-16
Ort: SR Kiepenheuer-Institut, Schöneckstr. 6
 5 ECTS
Beginn: 21.10.2021
Lecture link


Programme:

This is an advance course on physics of stars (including the Sun) and planets. It starts from reviewing the theory of radiative transfer, including polarized radiation due to scattering and magnetic fields. Then, we will learn about solar and stellar magnetic activity, followed by stellar evolution. Finally, we will study physics of planets, including their formation, evolution, atmospheres, and habitability. The course is given in English.
 

Prerequisits:

Introduction to Astronomy, minimum 2 years of natural science studies.
 

Literature:

 


Physics of Medical Imaging Methods

Lecturer: Prof. Dr. Michael Bock
Time: 2 + 1 st., Do 12-14
Room: Room Big Green, Killianstr. 5a, Uniklinik
5 ECTS
Start: 21.10.2021
Tutorials: n.V.
ILIAS

Program:

Medical imaging is becoming increasingly important in the detection of disease, in the management of the patients, and in the monitoring of a therapy. In this lecture the physical basics of different medical imaging technologies will be presented, and different clinical application scenarios will be discussed. The following topics will be addressed:

  • overview over the physics of medical imaging
  • Magnetic Resonance Imaging (MRI)
    • magnetisation, Bloch equations, relaxation times T1 and T2
    • spin gymnastics and image contrast
    • magnets, gradients and radio-frequency coils
    • quantitative MRI
    • functional MRI, flow, diffusion, perfusion measurements
  • Nuclear Medicine
    • principles of radio-tracer detection
    • scintigraphy
    • single photon emission computed tomography (SPECT)
    • positron emission tomography (PET)
  • ultrasound (US)
    • sound generation and propagation in tissue
    • US imaging
    • Doppler US
    • therapeutic applications of US (Lithotrypsy)
  • X-ray Imaging
    • properties and generation of X-rays
    • fluoroscopy
    • computed tomography
    • image reconstruction from projections
  • role of medical imaging in
    • the detection of disease
    • in patient management
    • therapy monitoring

 

Literature:

  • Oppelt A: Imaging Systems for Medical Diagnostics
  • Dössel O: Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung

  


Theory and Modeling of Materials: Electronic structure theory of condensed matter I

Lecturer: apl Prof. Dr. Christian Elsässer
Time: 2 + 1 st., Fr 8-10
Room: SR I
5 ECTS
Start: 22.10.2021
Exercises: approx. bi-weekly 2 hours on appointment (1 SWS)

ECTS points: 3 (three) for attendance of lectures only; 3+2 (five) for attendance of lectures, participation in exercises, and final oral exam.
 

Program:

The two-semester course introduces theoretical models and computational methods of solid-state physics for the description of many-electron systems, by means of which cohesion and structure, physical and chemical properties of materials can be understood qualitatively and calculated quantitatively on a microscopic basis.

In the winter semester 2021/2022, the following theoretical concepts will be addressed: Free electron gas; electrons in a crystal; nearly free electrons ("energy bands") or tightly bound electrons ("chemical bonds"); electron-electron interactions and effective one-electron theories; first-principles density functional theory and semi-empirical approaches for electronic-structure calculations.

In the summer semester 2022, the concepts will be applied to study, e.g., the following topics: Cohesion of solids, bonding types and lattice structures of crystals; electron band structures and energy spectra; electronic transport; electrons and phonons; electronic properties of defects and dopants, surfaces and interfaces; ferroelectric and ferromagnetic materials.
 

Prerequisites:

B.Sc. Courses on Theoretical Physics I-IV


Literature:

  • A. P. Sutton, Electronic Structure of Materials, Oxford (1993)
  • D. G. Pettifor, Bonding and Structure of Molecules and Solids, Oxford (1995)
  • M. W. Finnis, Interatomic Forces in Condensed Matter, Oxford (2003)
  • R. M. Martin, Electronic Structure - Basic Theory and Practical Methods, Cambridge (2004)

 


Classical Density Functional Theory

Dozent: Dr. Andreas Härtel
Zeit: 2 st., Mo 9-11
Ort: SR GMH und CIP II
Übungen: 1 st., Mo 11-12
5 ECTS
Beginn: 18.10.2021


Program:

In this course we will study Density Functional Theory (DFT) and selected applications. We start from the original formulation by Hohenberg and Kohn and, then, focus on its formulation for classical systems at finite temperature. We will formulate and solve DFT for selected systems and learn about its connection to thermodynamic potentials as well as pair-distribution and correlation functions in fluids and crystals. For this purpose, we will remember the calculus with distributions. As applications we will study nematic order in liquid crystals, surface tension of fluid-solid interfaces, and blue energy harvesting and desalination as consequences of correlations in electrolytes and ionic systems.
 

Prerequisits:

Statistical Physics and Thermodynamics (Theoretical Physics IV)
 

Selected literature:

  • H. Kohn. Reviews of Modern Physics 71, p. 1253 (Oct 1999). Nobel Lecture: Electronic structure of matter—wave functions and density functionals.
  • A. Härtel. Shaker Verlag 2013. Density functional theory of hard colloidal particles: From bulk to interfaces.
  • A. Härtel. Journal of Physics: Condensed Matter 29, p. 423002 (Sep 2017). Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it.
  • J.-P. Hansen, I. R. McDonald. Elsevier 2013, 4th edn. Theory of simple liquids.

 


Quantum Field Theory II

Dozent: JProf. Dr. Harald Ita
Zeit: 4 st.,
Ort:
Übungen: n.V.
9 ECTS
Beginn:
Lecture link


Program:

  • Path Integral, perturbation theory, Feynman diagrams
  • Gauge theories and their quantisation, BRST symmetry
  • Gauge theory of strong interaction, quantum corrections and renormalisation
  • Jet production in lepton collisions
  • Deep inelastic scattering
  • Parton Model for hadron collisions, parton distribution functions, DGLAP evolution
  • Quantum effects in Drell-Yan process

 

Prerequisits:

 QFT I, Electrodynamics and Special Relativity
 

Literature:

Textbooks:

  • Peskin/Schroeder: "An Introduction to Quantum Field Theory"
  • Schwartz, "Quantum Field Theory and the Standard Model"
  • Coleman: "Notes from Sidney Coleman's Physics 253a" available online
  • Itzykson/Zuber: "Quantum Field Theory"
  • Weinberg: "The Quantum Theory of Fields, Vol.1,2"
  • Sexl, Urbantke: "Relativität, Gruppen, Teilchen"
  • Cvitanovic: "Field Theory", the Nordita 1983 Lecture notes available online
     

More advanced Textbooks:

  • Böhm/Denner/Joos: "Gauge Theories of the Strong and Electroweak Interaction"
  • Nakahara: "Geometry, Topology and Physics"

 

 


Biophysik: Grundlagen und Konzepte

Dozent: Prof. Dr. Alexander Rohrbach
Zeit: 3 + 2 st., Di 10-13
Ort: IMTEK Geb. 101, SR 01-009/13
7 ECTS
Beginn: 19.10.2021
ILIAS

Programm:

Biophysik ist wahrscheinlich der Zweig der Physik, der das größte Zukunftspotenzial in den nächsten 50 Jahren birgt. Wie das? Biophysik beschreibt das Verhalten lebender Materie, welcher in ihrer Komplexität durch nichts in dieser Welt übertroffen ist. Allein das Verhalten einer einzelnen lebenden Zelle in den nächsten Jahrzehnten zu verstehen, erfordert weltweit und zunehmend Physiker und Ingenieure, die mit einer Vielzahl an modernsten Untersuchungs­methoden primär im Bereich der Optik (bis hinunter zu Einzelphoton-Analysen) und Nanotechnologie arbeiten und diese mit gewaltigen mathematisch-theoretischen Konzepten und aufwändigen Computersimulationen kombinieren. Biologische Prozesse und Messungen sind stets im Bereich von Unschärfen und Energiefluktuationen, welche nur mit physikalischen Konzepten analysiert und interpretiert werden können. Das geht natürlich nicht ohne die brillanten Vorarbeiten von Biologen und Bio-(Chemikern).

Die Vorlesung stellt Grundlagen und moderne Konzepte der Biophysik und der Physik der weichen Materie dar. Zahlreiches Anschauungsmaterial wird mit mathematischen Konzepten der statistischen Mechanik vorgestellt - im Ortsraum wie im Frequenzraum. Makroskopische, Ingenieur­wissenschaftliche Konzepte werden hinuntertransformiert auf die molekulare Ebene.

Die Vorlesung (3 ECTS) richtet sich an Physiker und Ingenieure im Masterstudium. Der Vorlesungsstoff wird mit wöchentlichen Übungen (zusätzlich 3-4 ECTS) veranschaulicht und gefestigt.


Inhaltsverzeichnis:

  1. Aufbau der Zelle oder Das Rezept für biophysikalische Forschung
    • Eine Einführung
    • Die Bausteine des Lebens
    • Modellerstellung in der Biologie durch Schematisierung
    • Bewegung in einer überdämpften Welt
    • Kurztrip durch die Zellbiologie
  2. Diffusion und Fluktuationen
    • Brownsche Bewegung
    • Diffusion im externen Potential
  3. Mess- und Manipulationstechniken
    • Optische Abbildung und Konfokale Mikroskopie
    • Fluoreszenzmikroskopie
    • Fluorescence Resonance Energy Transfer (FRET)
    • Particle Tracking
    • Optische Pinzetten
    • Rasterkraftmikroskopie
    • Röntgenbeugung und NMR-Spektroskopie
  4. Biologisch relevante Kräfte
    • Einführung und Übersicht
    • Van der Waals Kräfte
    • Elektrostatische Wechselwirkung
    • Entropische Wechselwirkungen
  5. Biophysik der Proteine
    • Einleitung und Motivation
    • Die Struktur der Proteine
    • Proteinfaltung
  6. Polymerphysik einzelner Filamente
    • Einleitung und Motivation
    • Die Balkentheorie
    • Polymere als biegsame Federn
  7. Visko-Elastizität und Mikro-Rheologie
    • Motivation und Hintergrund
    • Elastizität und Viskosität
    • Retardierte Partikelbewegung und Antwortfunktion
    • Mikro-Rheologie
  8. Die Dynamik des Zytoskeletts
    • Einleitung und Motivation
    • Struktur der Zytoskelett-Filamente
    • Mathematische Modelle der Zytoskelett-Polymerisation
    • Kraftentfaltung durch Polymerisation
  9. Molekulare Motoren
    • Rotations- und Translationsmotoren
    • Struktur der Translations-Motoren
    • Motorgeschwindigkeiten und Schrittweiten
    • Myosin-Motoren in einem zellulären Teilsystem
    • Motorenorganisation mit dem Zytoskelett
  10. Membran-Biophysik
    • Aufbau und Struktur der Membrane
    • Elastische Eigenschaften der Membrane
  11. Anhang
    • Anhang: Wichtige Zellorganellen
    • Anhang: Ausgewählte Probleme

 

Einführende Literatur:

  • Joe Howard: Mechanics of Motor Proteins and the Cytoskeleton
  • Gary Boal: Mechanics of the Cell
  • Rob Phillips : Physical Biology of the Cell

 


Physics of Microscopy and Image Formation

Lecturer: Prof. Dr. Alexander Rohrbach
Time: 3 + 2 st., Mi 10-13
Room: SR GMH
7 ECTS
Start: 20.10.2021
ILIAS

Program:

  1. Microscopy: History, Presence and Future
    • History
    • Present and Future Tasks
    • Literature
  2. Wave- and Fourier-Optics
    • What is Light?
    • The change of Light in Matter
    • Helmholtz equation and plane waves
    • Wave functions in space and frequency domain
    • Superposition of waves: Interference and Coherence
    • Fourier-Optics
    • Wave propagation and diffraction
  3. Three-dimensional optical imaging and information transfer
    • Imaging through lenses
    • Optical image formation – a spatial low-pass filtering
    • Optical resolution and optical transfer function
    • Coherent and incoherent imaging
    • Vectorial light focusing
    • Aberrations of the Point-Spread Function
  4. Contrast enhancement by Fourier-filtering
    • Image formation with phase objects
    • Phase contrast according to Zernike
    • Dark field microscopy and amplitude spatial filters
    • Generating contrast by polarization
    • Holographic microscopy
  5. Fluorescence - Basics and Techniques
    • Definitions and principles of light scattering
    • Fluorescence excitation und emission
    • Decay rates and fluorescence lifetime
    • Fluorescence Polarisation and Anisotropy
  6. Point scanning and confocal microscopy
    • Image formation with point- and area-detectors
    • Confocal microscopy
    • 4pi Microscopy
  7. Microscopy in thick media
    • Photon diffusion in strongly scattering media
    • Light Sheet Microscopy
    • Microscopy with holographic scan beams
    • Lattice light-sheet microscopy
  8. Nearfield and Evanescent Field Microscopy
    • The spectrum of near fields and far fields
    • Nearfield Scanning Optical Microscopy (NSOM)
    • Evanescent illumination and TIR- Microscopy
  9. Super-resolution by structured illumination
    • Modulated illumination to increase resolution
    • Structured illumination for axial sectioning
  10. Multi-Photon-Microscopy
    • Basics of nonlinear optics
    • Two-photon fluorescence microscopy
    • Second Harmonic Generation-Microscopy
    • CARS microscopy
  11. Super-resolution imaging by switching single molecules
    • Position tracking
    • STED-Microscopy
    • PALM and STORM
    • Super-resolution optical fluctuation imaging (SOFI)
  12. Appendix
    • Signal and Noise
    • Survey about super resolution microscopy

 

About the lecture:
The scientific breakthroughs and technological developments in optical microscopy and imaging have experienced a real revolution over the last 10-15 years. Hence, the 2014 Nobel-Prize for super-resolution microscopy could be seen as a logical consequence. This lecture gives an overview about physical principles and techniques used in modern photonic imaging.

Goals:
The student should learn how to guide light through optical systems, how optical information can be described very advantageously by three-dimensional transfer functions in Fourier space, how phase information can be transformed to amplitude information to generate image contrast. Furthermore one should experience that wave diffraction is not reducing the information and how to circumvent the optical resolution limit. The student should learn to distinguish between coherent and incoherent imaging, learn about modern techniques using self-reconstructing laser beams, two photon excitation, fluorophores depletion through stimulated emission (STED) or multi-wave mixing by coherent anti-Stokes Raman scattering (CARS). The lecture has an ongoing emphasis on applications, but nevertheless presents a mixture of fundamental physics, compact mathematical descriptions and many examples and illustrations. The lecture aims to encompass the current state of a scientific field, which will influence the fields of nanotechnology and biology/medicine quite significantly.

In the tutorials the contents of the lecture will be strengthened and consolidated. In particular transfer thinking will be trained. The students must work on the weekly distributed exercises and then present the results in class after one week. The solutions of the more difficult exercises might be presented by the tutor.
 

Prerequisits:

 

Literature:

 


Biophysics of cardiac function and signals

Lecturer: Dr. Viviane Timmermann, Prof. Dr. Peter Kohl
Time: 2 + 2 st., Fr 14-16
Room: Technische Fakultät (IMTEK), SR 00-010/14, Geb. 101
5 ECTS
Start: 22.10.2021
Tutorials: 2 st. n.V., Mi 16-18, IMTEK SR 01-009/013, Geb. 101
ILIAS

Program:

The basic concept of this lecture is to examine a biological system, analyse it and define mathematical equations in order to describe the system. In this lecture, the heart is used as this system. The students learn the electrical and mechanical function of the heart and its modelling. Additionally, the bioelec-trical signals that are generated in the human body are described and how these signals can be measured, interpreted and processed. The content is explained both on the biological level and based mathematical modelling.

  • Cell membrane and ion channels
  • Cellular electrophysiology
  • Conduction of action potentials
  • Cardiac contraction and electromechanical interactions
  • Optogenetics in cardiac cells
  • Numerical field calculation in the human body
  • Measurement of bioelectrical signals
  • Electrocardiography
  • Imaging of bioelectrical sources
  • Biosignal processing

 

Prerequisits: 

Basic interest in biology and computational modelling. Knowledge in Matlab or Python are beneficial

Literature:

  • lecture slides

 


Term Paper: Classical Solutions in Gauge Theory

Lecturers: Dr. Mara Ungureanu (Math. Institut), Prof. Dr. Jochum van der Bij (Physik. Institut)
Pre-meeting: 22.07.2021, 14-16 (online) Time: Do 14–16, HS II, Albertstr. 23b and bbb-Raum Euwe
Course-Info
6 ECTS
Start:


Content:

The goal of this seminar is to explore both mathematical and physical aspects of gauge theories. As field theories combining both quantum mechanics and Einstein’s theory of special relativity, gauge theories play an important role in modern physics and mathematics.
Using geometric concepts such as principle bundles, Lie groups, and Lie algebras we shall describe various solutions to the equations of motion of Yang-Mills gauge theories, including monopoles and instantons, and explore the concept of symmetry breaking which gives rise to the Higgs mechanism.


Info:

This seminar is run jointly by the Freiburg Mathematics and Physics departments. The talks are aimed at a mixed audience of mathematics and physics students, with the aim of bridging the language gap between the two approaches to gauge theories. For physics students it is recommended to follow the General Relativity lecture in parallel.


Literature:

  • J. Baez, J.P. Muniain, Gauge Fields, Knots and Gravity, World Scientific, 1994
  • C. Nash, S. Sen, Topology and Geometry for Physicists, Academic Press, 1983

 

 


Term Paper: Milestones in Astrophysics

Lecturers: apl. Prof. Dr. Markus Roth
Time:
6 ECTS
Start:
ILIAS

Topics:

In the last decades major detections were made in astrophysics that changed our view on the world. In this term paper seminar we will review the physics of these detections. Possible topics are

  • Cosmic Radiation
  • Microwave background
  • Energy generation in stars
  • White dwarfs
  • Black holes
  • Pulsars
  • Cosmic Neutrinos
  • X-ray Astronomy
  • Expansion of the Universe
  • Gravitational Waves
  • Extra-Solar Planets

     

Term Paper: Higgs Physics - Theoretical foundations and experimental knowledge

Lecturers: Prof. Dr. Markus Schumacher, Prof. Dr. Stefan Dittmaier
Time:
6 ECTS
Start: 25.10.2021
ILIAS


Details:

Details will be discussed in a first (online) meeting on the 25/10/2021 at 14:00 via ZOOM, see ILIAS [https://ilias.uni-freiburg.de/ilias.php?ref_id=2339102&cmdClass=ilrepositorygui&cmdNode=zf&baseClass=ilrepositorygui].


Term Paper: Atomic Physics: From Nobel Prizes to Applications

Lecturers: Dr. Amir Mohammadi, Dr. Thomas Walker, Dr. Ulrich Warring, Prof. Dr. Tobias Schätz
Time:
6 ECTS
Start: 26.10.2021
ILIAS


Details:

Fundamental research and technical inventions seemingly go hand-in-hand and enable developments toward applications. In our seminar series, we revisit some examples of the past one hundred years in and around the field of atomic physics, some of which may even impact your daily life. Many of our modern methodologies can be traced back e.g. to the experiments of Otto Stern and Walter Gerlach in the 1920s or the work of Isidor Isaac Rabi in the 1930s. During the class we will follow in the footsteps of subsequent Nobel Prize laureates to modern applications, e.g., laser cooling, atom traps, clocks, sensors, and quantum information processing.

We may offer up to ten topics in this context. Details will be discussed in a first (online) meeting on the 26/10/2021, see ILIAS [https://ilias.uni-freiburg.de/goto.php?target=crs_2335324&client_id=unifreiburg].

Personal tools