azubiele.png

azubimech.png

Kommentare Wintersemester 2019/20

Veranstaltungsbeschreibungen in deutsch und für englisch-sprachige Master-Veranstatungen in englischer Sprache. Course descriptions in German and for English-taught Master courses in English.

 


Vorkurs Mathematik

Dozent: Dr. Andreas Härtel
Zeit: Blockveranstaltung ganztägig, vor Vorlesungsbeginn: Mo 07.10. - Fr 11.10.2019
Vorlesung: täglich 9-12
Übungen: nachmittgs 14-17 in Gruppen
Ort: Großer HS Physik (Herrmann-Herder-Str. 3) - Lageplan
Link ILIAS

Programm:

Auffrischen mathematischer Grundkenntnisse:
Rechnen, Ableiten, Integrieren, Analytische Geometrie und Lineare Algebra, Statistik und Wahrscheinlichkeitsrechnung
 

Vorkenntnisse:

keine, Anmeldung nicht erforderlich!
 

Einführende Literatur:

  • Glaeser, Der mathematische Werkzeugkasten, Elsevier (2006)
  • Heft, Mathematischer Vorkurs, Elsevier (2006)
  • Korsch, Mathematik-Vorkurs, Binomi Verlag (2004)
  • Weltner, Mathematik für Physiker (12. Auflage), Springer (2001)

 


Wissenschaftliches Programmieren

Dozent: PD Dr. Michael Walter
Zeit: 2 + 2 st., Di 10-12
Ort: HS I
Beginn: 22.10.2019

Programm:

Einführung in das wissenschaftliche Programmieren am Beispiel der mächtigen Programmiersprache Python. Der Kurs behandelt die Grundlagen bis hin zu numerischen Problemen mit "numeric python", dem Grafikpaket "pylab/matplotlib", numerische Integration und das symbolische Rechnen mit "sympy".


Weitere Bestandteile sind eine Einführung in "Mathematica" (symbolisches Rechnen) und die Python-Schnittstelle zu ROOT (root.cern.ch) "PyROOT".

 

Voraussetzungen:

Bei Verwendung eines eigenen Rechners empfiehlt sich folgende Software zu installieren:

 

Einführende Literatur:

 


Experimentalphysik I
(Mechanik, Gase und Flüssigkeiten)

Dozent: Prof. Dr. Tobias Schätz
Zeit: 4 + 2 st., Mo, Mi 10-12
Ort: Gr. HS
Beginn: 21.10.2019

Programm:

  • Kinematik des Massenpunktes und Newtonsche Mechanik:
    Gleichförmige und gleichmäßig beschleunigte Bewegung, Newtonsche Gesetze, Inertialsysteme, Galilei Transformation, kinetische und potentielle Energie, Impuls
  • Mechanik starrer und deformierbarer Körper:
    Schwerpunkt, Trägheitsmomente, Steinerscher Satz, Haft-/Gleitreibung
  • Schwingungen und Wellen:
    Erzwungene und gedämpfte Schwingung, Resonanz, gekoppelte Oszillatoren, Ausbreitung von Wellen, stehende Wellen, Akustik
  • Gase und Flüssigkeiten:
    Kinetische Gastheorie, Geschwindigkeitsverteilung, Druck, Hydrostatik, Strömungen, Kontinuitätsgleichung
  • Wärmelehre und Thermodynamik:
    Wärmekapazität, Wärmetransport, innere Energie, Erster Hauptsatz der Thermodynamik, ideales Gas, adiabatische Zustandsänderung, Zweiter Hauptsatz der Thermodynamik, Entropie, Carnot Prozess, Aggregatzustände

 

Vorkenntnisse:

Schulphysik und -mathematik, Inhalte des Vorkurs Mathematik (Skript online)
 

Einführende Literatur:

  • Gerthsen, Physik, Springer-Verlag
  • Tipler, Physik, Spektrum Verlag 
  • W. Demtröder, Experimentalphysik 1, Mechanik und Wärme, Springer-Verlag
     

Experimentalphysik III
(Spezielle Relativitätstheorie, Optik und Quantenphysik)

Dozent: Prof. Dr. Bernd von Issendorff
Zeit: 4 + 2 st., Di, Mi 8-10
Ort: Gr. HS
Beginn: 22.10.2019

Programm:

Die Vorlesung Experimentalphysik III vermittelt die experimentellen Grundlagen im Bereich der Optik, Atom- und Quantenphysik.

Folgende Themen werden behandelt:

  • Grundlagen der speziellen Relativitätstheorie: Inertialsysteme, Lorentz- Transformation, Zeitdilatation, Längenkontraktion
  • Fortgeschrittene Optik: Polarisation von Licht, Doppelbrechung, Polarisa- tionsoptik, Gaußsche Strahlen, optische Resonatoren, Laser, Grundlagen der nicht-linearen Optik
  • Quantenphysik: Quantenphänomene, Unschärferelation, Schrödinger-Gleichung, Axiome der Quantenmechanik, Bahn-Drehimpulse, Wasserstoffatom
  • Struktur einfacher atomarer Systeme, Periodensystem, Wechselwirkung Licht-Materie

 

Vorkenntnisse:

Experimentalphysik I und II
 

Einführende Literatur:

 


Experimentalphysik V
(Kern- und Elementarteilchenphysik)

Dozent: Dr. Christian Weiser
Zeit: 4 + 2 st., Di 12-14, Mi 10-12
Ort: HS II
Beginn: 22.10.2019

Programm:

  • Grundlagen von Streu- und Zerfallsprozessen
  • Struktur und Eigenschaften von Atomkernen, Kernmodelle und Kernzer- fälle
  • Teilchenbeschleuniger und Teilchendetektoren
  • Anwendungen der Kern- und Teilchenphysik
  • Symmetrien, Spektrum der Elementarteilchen, elektromagnetische, starke und schwache Wechselwirkung
  • Standardmodell der Teilchenphysik und seine Grenze

 

Vorkenntnisse:

Experimentalphysik I-IV


Einführende Literatur:

 


Analysis für Physiker

Dozent: apl Prof. Dr. Thomas Filk
Zeit: 4 + 2 st., Di, Mi 12-14
Ort: HS I
Beginn: 22.10.2019


Inhalt: 

  • Grundlagen der Mengenlehre, Äquivalenz- und Ordnungsrelationen
  • Einführung in die komplexen Zahlen, Euler-Formel, Beziehungen zu trigo- nometrischen und hyperbolischen Funktionen.
  • Beweisverfahren
  • Funktionen, Umkehrfunktionen
  • Folgen, Grenzwerte, Cauchy-Grenzwert, offenen und geschlossene Mengen
  • Reihen, Konvergenzkriterien, Stetigkeit von Funktionen
  • Ableitung von (auch mehrkomponentigen) Funktionen, auch in mehreren Variablen, Ableitungsregeln
  • Koordinatensysteme, speziell Polar-, Zylinder- und Kugelkoordinaten.
  • ntegration, Integrationsregeln, Wegintegration, Flächen- und Volumenintegration, Gaußscher und Stokes’scher Satz

 

Vorkenntnisse:

Empfohlen werden die Inhalte des Vorkurs Mathematik (ein Skript ist über die Webseite verfügbar).
 

Einführende Literatur:

 


Theoretische Physik II
(Elektrodynamik)

Dozent: apl Prof. Dr. Heinz-Peter Breuer
Zeit: 4 + 2 st., Mo, Do 10-12
Ort: HS I
Beginn: 21.10.2019


Programm: 

  • Elektrostatik
  • Magnetostatik
  • Elektromagnetische Wellen, Optik
  • Elektrodynamik und Relativitätstheorie

 

Vorkenntnisse:

Analysis für Physiker, Lineare Algebra, Theoretische Physik I
 

Literatur:

  • W. Nolting, Grundkurs Theoretische Physik 3: Elektrodynamik, Springer
  • D.J. Griffiths, Elektrodynamik: Eine Einführung, Pearson
  • T. Fließbach, Elektrodynamik, Spektrum
  • J. D. Jackson, Klassische Elektrodynamik, de Gruyter
     

Theoretische Physik IV
(Statistische Physik)

Dozent: Prof. Dr. Tanja Schilling
Zeit: 4 + 2 st., Mo 12-14, Di 10-12
Ort: Mo HS I, Di HS II
Beginn: 21.10.2019


Programm: 

  • Grundlagen der theoretischen Thermodynamik. Postulate und Hauptsaetze der Thermodynamik, thermodynamische Potenziale, Legendre-Transformationen; thermische und kalorische Zustandsgleichung, Maxwell-Relationen, einfache Beziehungen zwischen Materialgrößen; speziell die Zustandsgrößen und Beziehungen beim freien Gas. Zyklische Prozesse, Wirkungsgrad.
  • mikroskopische Beschreibung von thermodynamischen Gleichgewichtszuständen (Gesamtheiten).
  • Freie Quantengase: Bose-Gas, Fermi-Gas bei tiefen Temperaturen, Photonen (Planck'sche Strahlungsformel), Phononen, thermodynamische Freiheitsgrade.
  • Einführung in die Theorie der Phasenübergänge, Landau-Theorie des Phasenübergangs, kritische Exponenten.

 

Vorkenntnisse:

Theoretische Physik I-III, Analysis und Lineare Algebra
 

Anforderungen:

Für die Studienleistung zur Übung sind 50% der Übungspunkte erforderlich.
Die Prüfungsleistung besteht aus der Abschlussklausur.
 

Einführende Literatur:

  • R. Jelitto, Theoretische Physik 6: Thermodynamik und statistische Physik
  • W. Nolting, Theoretische Physik 6: Statistische Physik

 
 


Seminar Physik: tba

Dozenten: NN
Zeit: 
Ort:

Programm:

-

 


Kontextorientierung und Physik im Alltag

Dozent: Professoren und Dozenten der PH und des Physikalischen Instituts
Zeit: 3 + 2 st., Do 14-16
Ort: SR III
Beginn: tba

Dieses Seminar richtet sich an Studierende im M.Ed.
 

 

 


Advanced Quantum Mechanics

Lecturer: Prof. Dr. Michael Thoss
Time: 4 + 3 st., Mi, Fr 10-12
Room: HS I
Start: 23.10.2019


Program:

  • Recapitulation of basic quantum mechanical principles
  • Approximation methods
  • Theory of angular momentum
  • Many-particle systems
  • Dynamics of quantum systems
  • Relativistic quantum mechanics


Prerequisites

Theoretical Physics I-IV


Literature:

  • J.J. Sakurai, Modern Quantum Mechanics
  • F. Schwabl, Quantum Mechanics
  • W. Greiner, Quantum Mechanics: An Introduction
  • C. Cohen-Tannoudji, Quantum Mechanics 1+2
  • D. J. Tannor, Introduction to Quantum Mechanics

 


Introduction to Relativistic Quantum Field Theory

Dozent: Prof. Dr. Stefan Dittmaier
Zeit: 4 st., Mo 14-16, Do 10-12
Ort: HS II
Übungen: Fr 12-14, SR III
Beginn: 21.10.2019
lecture link

Programme:

  • Quantization of scalar fields (Klein Gordon equation, classical field theory, canonical quantization, scattering theory and Feynman diagrams)
  • Vector-boson fields (classical field equations, electromagnetic interactions and the gauge principle, quantization of the electromagnetic field, scalar QED and perturbative evaluation)
  • Dirac fermions (basics of Lie Groups, Lorentz group and its representations, Dirac and Weyl equations, Poincare group and its representations, quantization of free Dirac fields, QED and perturbative evaluation, applications)
  • Quantization with functional integrals

 

Prerequisits:

Quantum Mechanics, Electrodynamics and Special Relativity
 

Literature:

  • Bjorken/Drell: "Relativistic Quantum Mechanics"
  • Bjorken/Drell: "Relativistic Quantum Fields"
  • Itzykson/Zuber: "Quantum Field Theory"
  • Maggiore: "A Modern Introduction to Quantum Field Theory"
  • Peskin/Schroeder: "An Introduction to Quantum Field Theory"
  • Ramond: "Field Theory: a Modern Primer"
  • Tung: "Group Theory in Physics"
  • Weinberg: "The Quantum Theory of Fields, Vol.1: Foundations"

 


Introduction to General Relativity

Lecturer: Prof. Dr. Jochum van der Bij
Time: 4 + 3 st., Mo, Di 10-12
Room: SR I
Start: 21.10.2019
Tutorials: Fr 14-17, SR I

Program:

  • Equivalence principles: Minkowski space, Poincare group, space-time diagrams, world lines, proper time and distance, application to simple phenomena (elevator thought experiments, twin paradox, relativistic Doppler effect, accelerated systems), Lorentz transformations and general coordinate transformations.
  • Differential geometry: manifolds and tangent spaces, forms, metric tensor, integration, Stoke’s theorem, outer derivative, Lie derivative, covariant derivative and Christoffel symbols, parallel transport, geodesics, curvature (Riemann tensor, Weyl tensor, Ricci tensor and scalar), torsion, Killing vectors, Riemann coordinates.
  • Dynamics of the gravitational field: Einstein equations, cosmological constant, energy-momentum tensor of matter systems (perfect fluids, point particles, Klein-Gordon and Maxwell theory).
  • Effects based on post-Newtonian approximations: red/blue shift effects, rotation of the perihel, effect of gravitation on clocks, deflection of light.
  • Gravitational waves: perturbative expansion of field equations, gauge invariance, origin and detection of gravitational waves.
  • Classical space times: Minkowski, Rindler, Schwarzschild, Kerr, Reissner-Nordstrøm, Kerr-Newman geometries; Robertson-Walker metrics, Friedmann universes and deSitter space. Discussion of causal structure, geodesic completeness, key coordinate systems and Carter-Penrose diagrams.
  • Optional: Einstein-Hilbert action and variational principle.
  • Optional: Modern topics in cosmology: CMB, the Inflation Model.

 

Prerequisits:

Electrodynamics, special relativity, Lagrangian mechanics


Literature:

 


Theoretical Quantum Optics

Lecturer: Prof. Dr. Andreas Buchleitner
Time: 4 + 2 st., Di 16-18, Do 12-14
Room: Di HS I, Do HS II
Start: 22.10.2019
Tutorials: Do 14-16, HS II


Program:

  1. Introduction
  2. Quantum mechanics
    Hilbert space, operators, states, Schrödinger-, Heisenberg- and interaction picture
  3. Quantized electromagnetic field
    classical field, quantisation, coherent states, squeezed states, phase space representation, field correlations, photon counting statistics
  4. Light-matter interaction: general overview
    emission, absorption, scattering, multi-photon processes, radiation corrections, interaction induced by photon exchange 
  5. Coherent interaction of a two-level atom with a single field mode
    Bloch representation, Jaynes-Cummings model, Rabi oscillations, dressed states
  6. Incoherent interaction of a two-level atom with the electromagnetic continuum
    master equation, spontaneuous emission, optical Bloch equations, quantum regression theorem, resonance fluorescence

 

Prerequisits:

Theoretical Physics I - IV
 

Literature:

  • C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon-Interactions
  • L. Mandel, E. Wolf, Optical coherence and quantum optics
  • R. Loudon, The quantum theory of light
  • R. J. Glauber, Quantum theory of optical coherence

 


Classical Complex Systems

Lecturer: Prof. Dr. Joachim Dzubiella
Time: 4 + 2 st., Mo, 10-12, Di 12-14
Room: SR WB 2.OG
Start: 21.10.2019
Tutorials: Di 14-16, CIP II

Programme:

Complex systems are composed of many interacting or reacting elements with stochastic components and are found essentially everywhere, ranging, for example, from simple liquids in physics to reactions in chemistry and biology, up to macroscopic predator-prey populations and markets in economics. This lecture introduces selected statistical tools and numerical approaches to study and describe the physics of the complex phenomena in classical (non-quantum) many-body systems, with a particular focus on the mesoscale modeling of macromolecular liquids, their structure-property relations, diffusive processes and kinetics, and applications to molecular reactions. After an introduction to the statistical mechanics of interacting systems and stochastic processes, generally applicable statistical theories such as Langevin and Master equation approaches as well as basic computational strategies such as Monte-Carlo (MC) and Brownian Dynamics (BD) simulations will be discussed. The lessons are accompanied by analytical as well as numerical exercises. The latter provide a hands-on implementation of the stochastic (MC and particle-based reaction-diffusion) simulation methods, with applications to liquid structure and dynamics as well as (molecular) reaction kinetics.

Criteria for passing: it is mandatory to actively participate in all the excercises and accomplish 50% of questions and codes (SL). A grade will be given based on a final written exam (PL).
 

Prerequisits:

Basic knowledge in programming as well as statistical mechanics.
 

Literature:

  • Script (will be available via ILIAS)
  • K. A. Dill and S. Bromberg, Molecular Driving Forces
  • R. Zwanzig: Nonequilibrium Statistical Mechanics
  • N.G. van Kampen: Stochastic processes in Physics and Chemistry
  • M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. 3Rd edition (2017)

 


Particle Detectors

Lecturer: Prof. Dr. Marc Schumann
Time: 4 st., Do 10-12, Fr 12-14
Room: SR I
Start: 24.10.2019
Tutorials: 2 st, n.V.

Programme:

In this lecture the principles of particle detection, the basic measurement concepts and technical realisations are presented. After the discussion of individual detector components and detection principles, complete, large-scale detector systems in particle and astro-particle physics are discussed. In addition, some selected applications in medical imaging and other areas are presented.

Topics:

  • Basic interactions of charged and neutral particles
  • Measurement of ionisation
  • Position and momentum measurements
  • Time measurements
  • Energy measurement in calorimeters
  • Particle identification
  • Detector systems in particle and astro-particle physics
  • Selected applications in other areas
     

Prerequisits:

Bachelor studies, Experimental Physics V (Nuclear and Particle Physics)
 

Literature:

  • H. Kolanoski und N. Wermes, Teilchendetektoren, Springer Verlag
  • K. Kleinknecht, Detectors for Particle Radiation, Cambridge University Press, 2nd edition (2008)
  • W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer Verlag
  • C. Grupen, Teilchendetektoren, BI Wissenschaftsverlag

 


Advanced Atomic and Molecular Physics

Lecturer: Prof. Dr. Giuseppe Sansone
Time: 4 + 2 st., Mo 12-14, Di 10-12
Room: SR GMH
Start: 21.10.2019
Tutorials: n.V.

Program:

(1)  Molecular energy levels

  • electronic, vibrational and rotational states of diatomic and polyatomic molecules
  • molecular Rydberg states
     

(2)  Molecular spectroscopy

  • time-resolved vs frequency-resolved spectroscopy
  • molecular transitions and selection rules
  • measurable quantities in spectroscopy
  • applications of group theory to molecular spectroscopy
     

(3)  Atomic and molecular interactions and collisions

  • interatomic and intermolecular interactions
  • basic concepts of collision theory
  • probing molecular structure in collision experiments
     

(4)  Modern techniques in atomic and molecular physics

  • ultracold atoms: laser cooling, Bose Einstein condensation
  • optical lattices and atomic clocks
  • cold molecules
  • trapping of atoms, molecules and ions

 

Prerequisits:

Experimental Physics I-IV
 

Literature:

tba
 


Advanced Particle Physics

Lecturer: Dr. Andrea Knue, Prof. Dr. Gregor Herten
Time: 4 + 2 st., Di 12-14, Mi 14-16
Room: SR GMH
Start: 22.10.2019
Tutorials: Mo 10-12, SR GMH

Program:

  • Introduction
    (recapitulation of notation, relativistic kinematics, natural units, particle content of Standard Model, forces, Feynman diagrams, conservation laws)
  • The electromagnetic interaction: Quantum electrodynamics (QED)
    (QED as first local gauge theory, gauge principle, Lagrangian formulation, renormalisation, running coupling, experimental tests)
  • The strong interaction: Quantum Chromodynamics (QCD)
    (QCD as non abelian gauge theory, phenomenology, experimental tests)
  • From the weak interaction to the electroweak Standard Model
    (parity violation, CP violation, electroweak „unification“, phenomenology, experimental tests)
  • The Brout-Englert-Higgs mechanism in the Standard Model
    (theory, phenomenology and experimental tests)
  • Neutrino physics
    (masses, oscillations, Dirac vs. Majorana nature , theory and experimental status)
  • Limitations of the Standard Model


Building on the knowledge acquired in the course Experimental Physics V (Kerne und Teilchen), the Standard Model of particle physics is discussed in detail. The fundamental concepts, the phenomenological consequences, and experimental tests are presented. Students will also learn how to evaluate simple Feynman diagrams. Limitations of the Standard Model, which motivate the search for extensions will be discussed at the end. The lectures are complemented by exercises, including computer simulations, with the aim to provide a solid foundation in experimental particle physics.  
 

Prerequisits:  Experimentalphysik V, Kern- und Teilchenphysik

Literature:

  • F.Halzen und A.D.Martin, Quarks & Leptons, Wiley-Verlag.
  • P. Schmüser, Feynman-Graphen und Eichtheorien für Experimentalphysiker, Springer-Verlag.
  • D. Griffiths, Introduction to Elementary Particles, Wiley-VCH-Verlag.
  • M. Thomson, Modern Particle Physics, Cambridge University Press.

 


Advanced Condensed Matter I: Solid State Physics

Lecturer: Prof. Dr. Tobias Lau
Time: 4 + 2 st., Di 14-16, Mi 12-14
Room: SR GMH
Start: 22.10.2019
Tutorials: Mi 8-10, SR GMH

Program:

  • Atomic structure of matter
  • lattice dynamics, phonons
  • electronic structure of materials
  • optical properties
  • magnetism/superconductivity

 

Prerequisits:  Experimentalphysik I-III

Literature:

  • tba

 


Grundlagen der Halbleiterphysik / Fundamentals of Semiconductors & Optoelectronics

Dozent: apl Prof. Dr. Joachim Wagner (Fraunhofer IAF), Dr. Andreas Bett (Fraunhofer ISE)
Zeit: 3 st., Fr 8-10
Ort: SR GMH
Beginn: 25.10.2019

Programme:

  • Inorganic crystalline semiconductor materials (such as Si and GaAs)
  • Fabrication of bulk semiconductor crystals and epitaxial layers
  • Electronic band structure, tight-binding vs. nearly free electron approach
  • Effective mass of electrons and holes, n- and p-type doping
  • Density of states, statistics of electrons and holes • Electrical transport by electrons and holes, electric fields and currents
  • Quantization effects in semiconductors, quantum films and superlattices
  • p-n-junction, photodiode, light emitting diode (LED), diode laser

 

Preliminaries/Previous knowledge:

Solid-state physics and theoretical physics at the level of a BSc in Physics

Literature:

  • H. Ibach, H. Lüth, „Festkörperphysik" (Springer, 2009)
  • K. Seeger, „Semiconductor Physics“ (Springer, 2004)
  • P. Yu, M. Cardona, „Fundamentals of Semiconductors“ (Springer, 2010)

 


Observational Astrophysics and Astroweek on Tenerife

Dozent: Prof. Dr. Svetlana Berdyugina, Dr. Lucia Kleint
Zeit: 3 + 2 st, Do 14-17
Ort: SR Kiepenheuer-Institut
Beginn: 24.10.2019
Lecture link


Programme:

Observing the universe is one of the main tasks of the modern astrophysics. In this lecture course, fundamentals of observational astrophysics will be presented. First, students will learn about reference systems in astronomy, modern telescopes and instrumentations, as well as observing techniques and scientific applications. Then, students will prepare observing proposals for their own observations with telescopes available to KIS for research and outreach. Finally, students will carry out astronomical observations according to their proposals remotely or in situ at Tenerife Observatory, analyse obtained data, prepare written reports, and make presentations. After completing the course, students will be ready for carrying our research projects in observational astrophysics, which are available at KIS (also as Bachelor or Master thesis projects). The logistic of the trip to the observatory will be discussed at the first lecture.
 

The following topics will be addressed:

  • Spherical Astronomy
    • Astronomical coordinate systems
    • Astronomical time systems
  • Modern Optical Instrumentation
    • Optical telescopes
    • Current night-time telescopes and their instrumentation
    • Current solar telescopes and their instrumentation
  • Observational techniques and scientific applications
    • Imaging
    • Photometry
    • Spectroscopy
    • Polarimetry
  • Observational campaign
    • Preparing observing proposals
    • Observations
    • Data analysis
    • Reports and presentations

 

Literature:

  • Karttunen, H., Kröger, P., Oja, H., Poutanen, P., Donner, K. J.: „Fundamental Astronomy“, 5th edition, 2007 (a copy will be provided for each student)

 


Physics of Medical Imaging Methods

Lecturer: Prof. Dr. Michael Bock
Time: 2 + 1 st., Do 12-14
Room: Uniklinik, Killianstr. 5a, Seminarroom "Big Green"
Start: 24.10.2019
Tutorials: Mo 14-15:30, CIP II

Program:

Medical imaging is becoming increasingly important in the detection of disease, in the management of the patients, and in the monitoring of a therapy. In this lecture the physical basics of different medical imaging technologies will be presented, and different clinical application scenarios will be discussed. The following topics will be addressed:

  • overview over the physics of medical imaging
  • Magnetic Resonance Imaging (MRI)
    • magnetisation, Bloch equations, relaxation times T1 and T2
    • spin gymnastics and image contrast
    • magnets, gradients and radio-frequency coils
    • quantitative MRI
    • functional MRI, flow, diffusion, perfusion measurements
  • Nuclear Medicine
    • principles of radio-tracer detection
    • scintigraphy
    • single photon emission computed tomography (SPECT)
    • positron emission tomography (PET)
  • ultrasound (US)
    • sound generation and propagation in tissue
    • US imaging
    • Doppler US
    • therapeutic applications of US (Lithotrypsy)
  • X-ray Imaging
    • properties and generation of X-rays
    • fluoroscopy
    • computed tomography
    • image reconstruction from projections
  • role of medical imaging in
    • the detection of disease
    • in patient management
    • therapy monitoring

 

Literature:

  • Oppelt A: Imaging Systems for Medical Diagnostics
  • Dössel O: Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung

  


Theory and Modeling of Materials: Solid-State Magnetism

Lecturer: apl Prof. Dr. Christian Elsässer
Time: 2 + 1 st., Fr 8-10
Room: SR I
Start: 25.10.2019
Tutorials: 14-tägig, 2 st., n.V.

ECTS points: 3 (three) for attendance of lectures only; 3+2 (five) for attendance of lectures, participation in exercises, and final oral exam.
 

Program:

The series of one- or two-semester elective-subject lectures introduces theoretical models and computational methods of solid-state physics for the description of many-electron systems, by means of which cohesion and structure, physical, chemical, or mechanical properties of perfect crystals and real materials can be understood qualitatively and calculated quantitatively on a microscopic fundament.

The course in the present semester deals with theoretical models and computational methods for understanding and calculating magnetic properties of materials:

  • Solid-state magnetism, magnetic orders in crystals, and intrinsic properties of magnets.
  • Itinerant electrons and magnetic phases of transition metals – electron-gas models based on the density functional theory.
  • Localized moments and magnetic properties of rare-earth and transition-metal compounds – magnetism and thermodynamics of spin models (Heisenberg, Ising, XY).
  • Microstructures and macroscopic properties of magnets.

 

Prerequisits: 

Theoretical physics and solid-state physics on the level of a BSc in Physics
 

Literature:

  • J. M. D. Coey, Magnetism and Magnetic Materials, Cambridge (2009)
  • P. Mohn, Magnetism in the Solid State – An Introduction, Springer (2006)
  • J. Kübler, Theory of Itinerant Electron Magnetism, Oxford (2009)
  • H. Kronmüller and M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids, Cambridge (2003)

 


Simulating the Physical World

Lecturer: Prof. Dr. Gerhard Stock, Dr. Steffen Wolf
Time: 4 + 2 st., Mi 12-14, Do 10-12
Room: Mi HS II, Do SR GMH
Start: 23.10.2019
Exercises (Computer Lab): 2 st., n.V.
Lecture link
 

Synopsis:

Recent advances in theoretical and computational sciences have made it possible to achieve a "first principles" description of complex phenomena, such as the dynamical properties of materials and the functional motion of biomolecules. To this end, the lecture aims to provide an introduction into basic computational strategies such as molecular dynamics and Monte-Carlo simulations. The lessons are accompanied by computer exercises, which provide an hands-on experience of the topics.

 

Preliminary Program:

I. Introduction

  • First principles description
  • From quantum to classical mechanics
  • Statistical description and probability
  • Statistical mechanics in a nutshell
  • Emergent complexity of dynamics
     

II. Simulation Approach

  • Probability distributions and averages
  • Monte-Carlo method
  • Molecular dynamics simulations
  • Sampling problem
  • The force field
  • Time-dependent phenomena
  • Analysis techniques
     

III. Applications

  • The miracles of liquid water
  • Folding and functioning of proteins
  • Drugs at work
  • TBC

 

Literature:

  • H.J.C. Berendsen: Simulating the Physical World
  • D. Frenkel, B. Smit: Understanding Molecular Simulation

 


Experimental Polymer Physics

Lecturer: Prof. Dr. Günter Reiter
Time: Do, Fr 8-10
Room: HS I
Start: 24.10.2019
Lecture link


Program:

We can't imagine life and technology today without polymers, if you think of materials like PET bottles and PVC, nylon, teflon or rubber. Also in nature biopolymers are ubiquitous, e.g. DNA, proteins or cellulose. This lecture will give an introduction into the experimental and theoretical concepts in understanding and characterisation of polymer systems. Both, applied and material aspects will be discussed - like polymer flow, elastomers and crystalline polymers - as well as present topics of fundamental research, e.g. glass transition, dynamics in confined geometries and self assembly. The lecture will deal with basic theoretical concepts and descriptive experiments. It will start with simple single chain phenomena and step by step develop more complex structures and dynamics of polymer solutions, melts and blends.
 

Prerequisits:

Grundvorlesungen und etwas Thermodynamik

 

Literature:

  • G. Strobl, The Physics of Polymers
  • Colby & Rubinstein, Polymer Physics

 


Biophysik: Grundlagen und Konzepte

Dozent: Prof. Dr. Alexander Rohrbach, Dr. Felix Jünger
Zeit: 3 + 2 st., Di 10-13
Ort: IMTEK, Gebäude 101, SR 01-018
Beginn: 22.10.2019

Programm:

Biophysik ist wahrscheinlich der Zweig der Physik, der das größte Zukunftspotenzial in den nächsten 50 Jahren birgt. Wie das? Biophysik beschreibt das Verhalten lebender Materie, welcher in ihrer Komplexität durch nichts in dieser Welt übertroffen ist. Allein das Verhalten einer einzelnen lebenden Zelle in den nächsten Jahrzehnten zu verstehen, erfordert weltweit und zunehmend Physiker und Ingenieure, die mit einer Vielzahl an modernsten Untersuchungs­methoden primär im Bereich der Optik (bis hinunter zu Einzelphoton-Analysen) und Nanotechnologie arbeiten und diese mit gewaltigen mathematisch-theoretischen Konzepten und aufwändigen Computersimulationen kombinieren. Biologische Prozesse und Messungen sind stets im Bereich von Unschärfen und Energiefluktuationen, welche nur mit physikalischen Konzepten analysiert und interpretiert werden können. Das geht natürlich nicht ohne die brillanten Vorarbeiten von Biologen und Bio-(Chemikern).

Die Vorlesung stellt Grundlagen und moderne Konzepte der Biophysik und der Physik der weichen Materie dar. Zahlreiches Anschauungsmaterial wird mit mathematischen Konzepten der statistischen Mechanik vorgestellt - im Ortsraum wie im Frequenzraum. Makroskopische, Ingenieur­wissenschaftliche Konzepte werden hinuntertransformiert auf die molekulare Ebene.

Die Vorlesung (3 ECTS) richtet sich an Physiker und Ingenieure im Masterstudium. Der Vorlesungsstoff wird mit wöchentlichen Übungen (zusätzlich 3-4 ECTS) veranschaulicht und gefestigt.


Inhaltsverzeichnis:

  1. Aufbau der Zelle oder Das Rezept für biophysikalische Forschung
    • Eine Einführung
    • Die Bausteine des Lebens
    • Modellerstellung in der Biologie durch Schematisierung
    • Bewegung in einer überdämpften Welt
    • Kurztrip durch die Zellbiologie
  2. Diffusion und Fluktuationen
    • Brownsche Bewegung
    • Diffusion im externen Potential
  3. Mess- und Manipulationstechniken
    • Optische Abbildung und Konfokale Mikroskopie
    • Fluoreszenzmikroskopie
    • Fluorescence Resonance Energy Transfer (FRET)
    • Particle Tracking
    • Optische Pinzetten
    • Rasterkraftmikroskopie
    • Röntgenbeugung und NMR-Spektroskopie
  4. Biologisch relevante Kräfte
    • Einführung und Übersicht
    • Van der Waals Kräfte
    • Elektrostatische Wechselwirkung
    • Entropische Wechselwirkungen
  5. Biophysik der Proteine
    • Einleitung und Motivation
    • Die Struktur der Proteine
    • Proteinfaltung
  6. Polymerphysik einzelner Filamente
    • Einleitung und Motivation
    • Die Balkentheorie
    • Polymere als biegsame Federn
  7. Visko-Elastizität und Mikro-Rheologie
    • Motivation und Hintergrund
    • Elastizität und Viskosität
    • Retardierte Partikelbewegung und Antwortfunktion
    • Mikro-Rheologie
  8. Die Dynamik des Zytoskeletts
    • Einleitung und Motivation
    • Struktur der Zytoskelett-Filamente
    • Mathematische Modelle der Zytoskelett-Polymerisation
    • Kraftentfaltung durch Polymerisation
  9. Molekulare Motoren
    • Rotations- und Translationsmotoren
    • Struktur der Translations-Motoren
    • Motorgeschwindigkeiten und Schrittweiten
    • Myosin-Motoren in einem zellulären Teilsystem
    • Motorenorganisation mit dem Zytoskelett
  10. Membran-Biophysik
    • Aufbau und Struktur der Membrane
    • Elastische Eigenschaften der Membrane
  11. Anhang
    • Anhang: Wichtige Zellorganellen
    • Anhang: Ausgewählte Probleme

 

Einführende Literatur:

  • Joe Howard: Mechanics of Motor Proteins and the Cytoskeleton
  • Gary Boal: Mechanics of the Cell
  • Rob Phillips : Physical Biology of the Cell

 


Photonic Microscopy

Lecturer: Prof. Dr. Alexander Rohrbach, Dr. Felix Jünger
Time: 3 + 2 st., Do 14-17
Room: SR GMH
Start: 23.10.2019

Program:

  1. Microscopy: History, Presence and Future
    • History
    • Present and Future Tasks
    • Literature
  2. Wave- and Fourier-Optics
    • What is Light?
    • The change of Light in Matter
    • Helmholtz equation and plane waves
    • Wave functions in space and frequency domain
    • Superposition of waves: Interference and Coherence
    • Fourier-Optics
    • Wave propagation and diffraction
  3. Three-dimensional optical imaging and information transfer
    • Imaging through lenses
    • Optical image formation – a spatial low-pass filtering
    • Optical resolution and optical transfer function
    • Coherent and incoherent imaging
    • Vectorial light focusing
    • Aberrations of the Point-Spread Function
  4. Contrast enhancement by Fourier-filtering
    • Image formation with phase objects
    • Phase contrast according to Zernike
    • Dark field microscopy and amplitude spatial filters
    • Generating contrast by polarization
    • Holographic microscopy
  5. Fluorescence - Basics and Techniques
    • Definitions and principles of light scattering
    • Fluorescence excitation und emission
    • Decay rates and fluorescence lifetime
    • Fluorescence Polarisation and Anisotropy
  6. Point scanning and confocal microscopy
    • Image formation with point- and area-detectors
    • Confocal microscopy
    • 4pi Microscopy
  7. Microscopy in thick media
    • Photon diffusion in strongly scattering media
    • Light Sheet Microscopy
    • Microscopy with holographic scan beams
    • Lattice light-sheet microscopy
  8. Nearfield and Evanescent Field Microscopy
    • The spectrum of near fields and far fields
    • Nearfield Scanning Optical Microscopy (NSOM)
    • Evanescent illumination and TIR- Microscopy
  9. Super-resolution by structured illumination
    • Modulated illumination to increase resolution
    • Structured illumination for axial sectioning
  10. Multi-Photon-Microscopy
    • Basics of nonlinear optics
    • Two-photon fluorescence microscopy
    • Second Harmonic Generation-Microscopy
    • CARS microscopy
  11. Super-resolution imaging by switching single molecules
    • Position tracking
    • STED-Microscopy
    • PALM and STORM
    • Super-resolution optical fluctuation imaging (SOFI)
  12. Appendix
    • Signal and Noise
    • Survey about super resolution microscopy

 

About the lecture:
The scientific breakthroughs and technological developments in optical microscopy and imaging have experienced a real revolution over the last 10-15 years. Hence, the 2014 Nobel-Prize for super-resolution microscopy could be seen as a logical consequence. This lecture gives an overview about physical principles and techniques used in modern photonic imaging.

Goals:
The student should learn how to guide light through optical systems, how optical information can be described very advantageously by three-dimensional transfer functions in Fourier space, how phase information can be transformed to amplitude information to generate image contrast. Furthermore one should experience that wave diffraction is not reducing the information and how to circumvent the optical resolution limit. The student should learn to distinguish between coherent and incoherent imaging, learn about modern techniques using self-reconstructing laser beams, two photon excitation, fluorophores depletion through stimulated emission (STED) or multi-wave mixing by coherent anti-Stokes Raman scattering (CARS). The lecture has an ongoing emphasis on applications, but nevertheless presents a mixture of fundamental physics, compact mathematical descriptions and many examples and illustrations. The lecture aims to encompass the current state of a scientific field, which will influence the fields of nanotechnology and biology/medicine quite significantly.

In the tutorials the contents of the lecture will be strengthened and consolidated. In particular transfer thinking will be trained. The students must work on the weekly distributed exercises and then present the results in class after one week. The solutions of the more difficult exercises might be presented by the tutor.
 

Prerequisits:

 

Literature:

 


Biophysics of cardiac function and signals

Lecturer: Dr. Gunnar Seemann, Prof. Dr. Peter Kohl, Dr. Franziska Schneider, Dr. Remi Peyronnet
Time: 2 + 2 st., Fr 14-16
Room: Technische Fakultät (IMTEK), Geb. 051, SR 03-026
Start: 25.10.2019
Tutorials: 2 st. n.V., Mi 16-18

Program:

The basic concept of this lecture is to examine a biological system, analyse it and define mathematical equations in order to describe the system. In this lecture, the heart is used as this system. The students learn the electrical and mechanical function of the heart and its modelling. Additionally, the bioelec-trical signals that are generated in the human body are described and how these signals can be measured, interpreted and processed. The content is explained both on the biological level and based mathematical modelling.

  • Cell membrane and ion channels
  • Cellular electrophysiology
  • Conduction of action potentials
  • Cardiac contraction and electromechanical interactions
  • Optogenetics in cardiac cells
  • Numerical field calculation in the human body
  • Measurement of bioelectrical signals
  • Electrocardiography
  • Imaging of bioelectrical sources
  • Biosignal processing

 

Prerequisits: 

Basic interest in biology and computational modelling. Knowledge in Matlab or Python are beneficial

Literature:

  • lecture slides

 


Solar Physics

Dozent: Prof. Dr. Oskar von der Lühe
Time: 2 + 1 st., Mi 14-16
Room: SR Kiepenheuer-Institut
Start:
Lecture link

Programme:

The lecture is targeted at students of the Master's curriculum in physics.
 

Prerequisits:

Experimental Physics I – IV.
Completion of an introductory course on astro-physics (e. g. bachelor course) is highly recommended.
 

Literature:


Term Paper: Texture, Taste, and Theory - The physics of food preparation

Lecturers: Prof. Dr. Tanja Schilling, Dr. Andreas Härtel
Time: tba


Summary:

We will discuss the physics and chemistry of food preparation. The range of topics covers mechanical aspects such as non-Newtonian flow behaviour in mayonnaise, ketchup and pudding, chemical aspects such as emulsification in sauces, and aspects of polymer physics in the context of preparing eggs. Students will present scientific talks and prepare food samples.

(We will use milk and eggs. The course is suited for vegetarians but not for vegans.)

 


Term Paper: Seismology on the Sun and Stars

Lecturers: apl prof. Dr. Markus Roth
Time: tba


Summary:

The Sun and the stars are subject to acoustic waves, which are generated by conversion of heat energy into kinetic energy. This results in pressure and density perturbations, which propagate through a star and excite resonant oscillation modes.

These solar and stellar oscillations are visible on the stellar surface and exhibit a broad spectrum of wavelengths and frequencies. Analyzing these “sounds of stars” it is possible to conclude on the processes inside a star, and to measure the internal structure, rotation, chemical composition, and age of a star.

The term paper "Seismology on the Sun and stars" will focus on the theory, instrumentation, and data analysis techniques of probing the interior of the Sun and the stars by studying their spectrum of resonant acoustic waves.

 


Term Paper: Attosecond Spectroscopy

Lecturers: Prof. Dr. Giuseppe Sansone, Dr. Sayed Ahmadi
Time: tba


Summary:

In the seminar we present the generation of attosecond laser pulses, the shortest pulses ever produced. The following techniques will be also introduced which allow us to monitor a dynamics on attosecond time scale:

  • Attosecond ion-electron coincidence spectroscopy
  • Attosecond transient absorption spectroscopy
  • Attoclock

 

 

Benutzerspezifische Werkzeuge