Kommentare Wintersemester 2016/17
Veranstaltungsbeschreibungen in deutsch und für englisch-sprachige Master-Veranstatungen in englischer Sprache. Course descriptions in German and for English-taught Master courses in English.
Vorkurs Mathematik
Dozent: Dr. Maxim Dolgushev
Zeit: Blockveranstaltung ganztägig, vor Vorlesungsbeginn: Di 07. - Sa 08.10.2016
Vorlesung: täglich 9-12
Übungen: nachmittgs 14-17 in Gruppen
Ort: Gr. HS
Programm:
Auffrischen mathematischer Grundkenntnisse:
Rechnen, Ableiten, Integrieren, Analytische Geometrie und Lineare Algebra, Statistik und Wahrscheinlichkeitsrechnung
Vorkenntnisse:
keine, Anmeldung nicht erforderlich!
Einführende Literatur:
- Glaeser, Der mathematische Werkzeugkasten, Elsevier (2006)
- Heft, Mathematischer Vorkurs, Elsevier (2006)
- Korsch, Mathematik-Vorkurs, Binomi Verlag (2004)
- Weltner, Mathematik für Physiker (12. Auflage), Springer (2001)
Wissenschaftliches Programmieren
Dozent: PD Dr. Michael Walter
Zeit: 2 + 2 st., Di 10-12
Ort: HS I
Beginn: 18.10.2016
Programm:
Einführung in das wissenschaftliche Programmieren am Beispiel der mächtigen Programmiersprache Python. Der Kurs behandelt die Grundlagen bis hin zu numerischen Problemen mit "numeric python", dem Grafikpaket "pylab/matplotlib", numerische Integration und das symbolische Rechnen mit "sympy".
Weitere Bestandteile sind eine Einführung in "Mathematica" (symbolisches Rechnen) und die Python-Schnittstelle zu ROOT (root.cern.ch) "PyROOT".
Voraussetzungen:
Bei Verwendung eines eigenen Rechners empfiehlt sich folgende Software zu installieren:
- ipython notebook (http://ipython.org/notebook.html)
- Mathematica (http://www.rz.uni-freiburg.de/services/beschaffung/software/info-mathematica)
- PyROOT (https://root.cern.ch)
Einführende Literatur:
- Hans Petter Langtangen A Primer on Scientific Programming, Springer Heidelberg, 2014, ISBN 978-3-642-54959-5
- https://scipy-lectures.github.io/
Experimentalphysik I
(Mechanik, Gase und Flüssigkeiten)
Dozent: Prof. Dr. Tobias Schätz
Zeit: 4 + 2 st., Mo, Mi 10-12
Ort: Gr. HS
Beginn: 17.10.2016
Programm:
- Kinematik des Massenpunktes und Newtonsche Mechanik:
Gleichförmige und gleichmäßig beschleunigte Bewegung, Newtonsche Gesetze, Inertialsysteme, Galilei Transformation, kinetische und potentielle Energie, Impuls - Mechanik starrer und deformierbarer Körper:
Schwerpunkt, Trägheitsmomente, Steinerscher Satz, Haft-/Gleitreibung - Schwingungen und Wellen:
Erzwungene und gedämpfte Schwingung, Resonanz, gekoppelte Oszillatoren, Ausbreitung von Wellen, stehende Wellen, Akustik - Gase und Flüssigkeiten:
Kinetische Gastheorie, Geschwindigkeitsverteilung, Druck, Hydrostatik, Strömungen, Kontinuitätsgleichung - Wärmelehre und Thermodynamik:
Wärmekapazität, Wärmetransport, innere Energie, Erster Hauptsatz der Thermodynamik, ideales Gas, adiabatische Zustandsänderung, Zweiter Hauptsatz der Thermodynamik, Entropie, Carnot Prozess, Aggregatzustände
Vorkenntnisse:
Schulphysik und -mathematik, Inhalte des Vorkurs Mathematik (empfohlen, Skript online)
Einführende Literatur:
- Gerthsen, Physik, Springer-Verlag
- Tipler, Physik, Spektrum Verlag
- W. Demtröder, Experimentalphysik 1, Mechanik und Wärme, Springer-Verlag
Experimentalphysik III
(Spezielle Relativitätstheorie, Optik, Quantenphysik und Atomphysik)
Dozent: Prof. Dr. Frank Stienkemeier
Zeit: 4 + 2 st., Di, Mi 8-10
Ort: Gr. HS
Beginn: 18.10.2016
Programm:
Die Vorlesung Experimentalphysik III vermittelt die experimentellen Grundlagen im Bereich der Optik, Atom- und Quantenphysik.
Folgende Themen werden behandelt:
- Grundlagen der speziellen Relativitätstheorie: Inertialsysteme, Lorentz- Transformation, Zeitdilatation, Längenkontraktion
- Fortgeschrittene Optik: Polarisation von Licht, Doppelbrechung, Polarisa- tionsoptik, Gaußsche Strahlen, optische Resonatoren, Laser, Grundlagen der nicht-linearen Optik
- Quantenphysik: Quantenphänomene, Unschärferelation, Schrödinger-Gleichung, Axiome der Quantenmechanik, Bahn-Drehimpulse, Wasserstoffatom
- Struktur einfacher atomarer Systeme, Periodensystem, Wechselwirkung Licht-Materie
Vorkenntnisse:
Experimentalphysik I und II
Einführende Literatur:
Experimentalphysik V
(Kern- und Elementarteilchenphysik)
Dozent: Prof. Dr. Marc Schumann
Zeit: 4 + 2 st., Mo 12-14, Mi 10-12
Ort: HS II
Beginn: Do 17.10.2016
Programm:
- Grundlagen von Streu- und Zerfallsprozessen
- Struktur und Eigenschaften von Atomkernen, Kernmodelle und Kernzer- fälle
- Teilchenbeschleuniger und Teilchendetektoren
- Anwendungen der Kern- und Teilchenphysik
- Symmetrien, Spektrum der Elementarteilchen, elektromagnetische, starke und schwache Wechselwirkung
- Standardmodell der Teilchenphysik und seine Grenze
Vorkenntnisse:
Experimentalphysik I-IV
Einführende Literatur:
Analysis für Physiker
Dozent: apl. Prof. Dr. Thomas Filk
Zeit: 4 + 2 st., Di, Mi 8-10
Ort: HS I
Beginn: 18.10.2016
Vorlesungs link
Inhalt:
- Grundlagen der Mengenlehre, Äquivalenz- und Ordnungsrelationen
- Einführung in die komplexen Zahlen, Euler-Formel, Beziehungen zu trigo- nometrischen und hyperbolischen Funktionen.
- Beweisverfahren
- Funktionen, Umkehrfunktionen
- Folgen, Grenzwerte, Cauchy-Grenzwert, offenen und geschlossene Mengen
- Reihen, Konvergenzkriterien, Stetigkeit von Funktionen
- Ableitung von (auch mehrkomponentigen) Funktionen, auch in mehreren Variablen, Ableitungsregeln
- Koordinatensysteme, speziell Polar-, Zylinder- und Kugelkoordinaten.
- ntegration, Integrationsregeln, Wegintegration, Flächen- und Volumenintegration, Gaußscher und Stokes’scher Satz
Vorkenntnisse:
Empfohlen werden die Inhalte des Vorkurs Mathematik (ein Skript ist über die Webseite verfügbar).
Einführende Literatur:
Theoretische Physik II
(Elektromagnetismus und Optik)
Dozent: Prof. Dr. Andreas Buchleitner
Zeit: 4 + 2 st., Mo, Do 10-12
Ort: HS I
Beginn: 17.10.2016
Vorlesungs link
Programm:
- Maxwell-Gleichungen
- Elektrostatik
- Magnetismus
- Elektromagnetische Wellen und Optik
Vorkenntnisse:
Analysis für Physiker, Lineare Algebra, Theoretische Physik I
Einführende Literatur:
- Berkeley Physik Kurs, Bd. 2, Elektrizität und Magnetismus, Vieweg
- Alonso, Finn, Fundamental University Physics, Vol. II, Fields and Waves, Addison Wesley
- Hecht, Optics, Addison Wesley
- Honerkamp, Roemer, Klassische Theoretische Physik, Springer
- Jackson, Klassische Elektrodynamik, de Gruyter
- Nolting, Grundkurs Theoretische Physik, Bd. 3, Elektrodynamik, Springer
- Scheck, Theoretische Physik 3: Klassische Feldtheorie, Springer
- Landau, Lifschitz, Lehrbuch der Theoretischen Physik, Bd. II, KLassische Feldtheorie, Akademie
- Sommerfeld, Vorlesungen über Theoretische Physik, Bd. III, Elektrodynamik, Harri Deutsch
Theoretische Physik V
(Statistische Physik)
Dozent: Prof. Dr. Gerhard Stock
Zeit: 4 + 2 st., Di, Fr 10-12
Ort: HS II
Beginn: 18.10.2016
Vorlesungs link
Programm:
- Grundlagen der theoretischen Thermodynamik. Nullter, erster, zweiter und dritter Hauptsatz der Thermodynamik, Gibb'sche Fundamentalform, statistischer Entropiebegriff, thermodynamische Potenziale, Legendre- Transformationen; thermische und kalorische Zustandsgleichung, Max- well-Relationen, einfache Beziehungen zwischen Materialgrößen; spezi- ell die Zustandsgrößen und Beziehungen beim freien Gas. Zyklische Prozesse (Carnot-Prozess, Stirling-Prozess), Wirkungsgrad.
- klassische und quantenmechanische Beschreibung von thermodynami- schen Gleichgewichtszuständen (Gesamtheiten). Zustandssummen der kanonischen und Großkanonischen Gesamtheit. Maxwell-Verteilung, barometrische Höhenformel, Virialsatz, klassische Störungsrechnung.
- Freie Quantengase: Bose-Gas, Bose-Einstein-Kondensation; Fermi-Gas bei tiefen Temperaturen, Photonen (Planck'sche Strahlungsformel), Phononen, thermodynamische Freiheitsgrade. Dia-, Para- und Fer- romagnetismus.
- Einführung in die Theorie der Phasenübergänge, Landau-Theorie des Phasenübergangs, kritische Exponenten.
Vorkenntnisse:
Theoretische Physik I-IV, Analysis und Lineare Algebra
Einführende Literatur:
- T. Fließbach. Statistische Physik
- J. Honerkamp. Statistical Physics
- W. Nolting. Theoretische Physik 6. Statistische Physik
Datenanalyse für Naturwissenschaftler/innen: Statistische Methoden in Theorie und Praxis
Dozent: Prof. Dr. Markus Schumacher
Zeit: 4 + 2 st., Mo, Mi 14-16 (Mi 14-tgl.)
Ort: HS II
Beginn: 24.10.2016
Programm:
Zur Einführung werden die Konzepte und Rechenmethoden der Statistik vorgestellt. Es werden die wichtigsten Wahrscheinlichkeitsverteilungen mit ihren Eigenschaften und Anwendungsbereichen diskutiert. Die "Monte-Carlo-Methode" zur Simulation von Zufallsereignissen wird besprochen.
Ein wichtiger Teil der Vorlesung behandelt die Parameterschätzung mit den Methoden der "Maximum Likelihood" und der "kleinsten Fehlerquadrate".
Im letzten Teil der Vorlesung geht es dann um den Test von statistischen Hypothesen, d.h. es wird erklärt, wie man die Signifikanz berechnet, mit der eine Hypothese akzeptiert oder zurückgewiesen wird. Außerdem wird besprochen, wie Konfidenzintervalle und Ausschlussgrenzen bestimmt werden.
Die Vorlesung wird von Übungen begleitet, in denen u. a. auch simulierte Datensätze mit dem Computer erzeugt und statistisch ausgewertet werden.
Vorkenntnisse:
Elementare Kenntnisse der Differential- und Integralrechnung.
Einführende Literatur:
- Cowan, Statistical Data Analysis, Oxford Univ Press
- Brandt, Datenanalyse: Mit statistischen Methoden und Computerprogrammen, Spektrum Akademischer Verlag
- Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, Wiley VCH
- Blobel und Lohrmann, Statistische und numerische Methoden der Datenanalyse, Teubner Verlag
Biophysik der Zelle
Dozent:
Prof. Dr. Alexander Rohrbach,
Dr. Dominic Ruh
Zeit: 3 + 2 st., Di 10-13
Ort: IMTEK, Gebäude 101, SR
Beginn: 18.10.2016
Programm:
Die Vorlesung stellt einen Streifzug durch die moderne Zellbiophysik dar, adressiert Fragen der aktuellen Forschung und stellt moderne Untersuchungsmethoden vor. Dies beinhaltet klassische, aber auch neueste physikalische Modelle und Theorien, welche in Kombination mit raffinierten Messmethoden einen erheblichen Fortschritt in der Biophysik, ermöglicht haben. Die angewandten physikalischen Methoden beflügeln nicht nur die Biologie und Medizin, sondern auch die Physik komplexer Systeme, welche mit der lebenden Zelle ein unvergleichliches Niveau an Selbstorganisation und Komplexität erreicht. Die Vorlesung richtet sich an Physiker und Ingenieure im Hauptstudium. Sie bietet eine bunte Mischung aus Physik, Biologie und Chemie, Mathematik und Ingenieurswissenschaft, welche mit zahlreichen Bildern und Animationen (sowie den Übungen) veranschaulicht werden.
Themen:
- Struktur und Aufbau der Zelle oder Das Rezept für zellbiophysikalische Forschung
- Diffusion und Fluktuationen
- Mess- und Manipulationstechniken
- Biologisch relevante Kräfte
- Biophysik der Proteine
- Polymerphysik
- Viskoelastizität und Mikro-Rheologie
- Die Dynamik des Zytoskeletts
- Molekulare Motoren
- Membranphysik
Vorkenntnisse:
Einführende Literatur:
- Joe Howard: Mechanics of Motor Proteins and the Cytoskeleton
- Gary Boal: Mechanics of the Cell
- Rob Phillips : Physical Biology of the Cell
Grundlagen der Halbleiterphysik / Fundamentals of Semiconductors & Optoelectronics
Dozent: apl. Prof. Dr. Joachim Wagner
Zeit: 3 st., Fr 8-11
Ort: SR Westbau 2.OG
Beginn: 21.10.2016
Programm:
Vorkenntnisse:
Einführende Literatur:
Solarthermie
Dozent:N.N.
Zeit: 2 + 1 st., Di 8-10
Ort: SR Westbau 2.OG
Beginn: 18.10.2016
Programm:
Vorkenntnisse:
Einführende Literatur:
Wissenschaftliches Rechnen mit Mathematica
Dozent: Prof. Dr. Hanspeter Helm
Zeit: 3 + 2 st., Mi 14-17
Ort: CIP Pool II
Beginn: 19.10.2016
Vorlesungs link
Programm:
Die numerische Behandlung konkreter naturwissenschaftlicher und technischer Problemstellungen spielt eine immer bedeutendere Rolle im Aufgabenprofil von Naturwissenschaftlern und Naturwissenschaftlerinnen. Parallel dazu liefern rechnergesteuerte Experimente immer umfangreichere Datensätze, deren Analyse nur über Rechner möglich ist. In dieser Veranstaltung beschäftigen wir uns in ersten Ansätzen mit diesen Themen und üben sie anhand praktischer Beispiele.
Nach einer Einführung in das Programmpaket MATHEMATICA® und seine Programmiersprache üben wir uns in Beispielen des symbolischen und numerischen Rechnens, der Lösung gekoppelter Differentialgleichungen sowie der Signal- und Bildanalyse. Schwerpunkte liegen unter anderem auch auf der interaktiven Kontrolle der Rechnungen, der grafischen Darstellung der Ergebnisse und dem Export und Import von Grafiken.
Vorkenntnisse:
Grundlagen der Physik und Mathematik. Die Veranstaltung wird insbesondere empfohlen für Studierende der Fächer Physik und Mathematik ab dem 3. Fachsemester und für andere interessierte Studierende naturwissenschaftlicher Fächer nach ihrem Physiksemester.
Einführende Literatur:
Advanced Quantum Mechanics
Dozent: Prof. Dr. Jochum van der Bij
Zeit: 4 + 3 st., Mi, Fr 10-12
Ort: HS I
Beginn: 19.10.2016
Vorlesungs link
Programme:
- Scattering theory: scattering amplitude and cross-section, partial wave expansion, Lippmann-Schwinger equation and Born series.
- Fundamentals of the representation theory of groups, in particular of the rotation group SO(3). Tensor product representations and irreducible representations. Wigner-Eckart theorem. Applications to angular momentum and spin couplings in atomic, molecular and condensed matter phys- ics.
- Time-dependent perturbation theory: Dyson-expansion, Fermi’s Golden Rule, examples of application to important time-dependent quantum pro- cesses.
- Many-particle systems: identical particles, spin-statistic theorem, varia- tional principles, Hartree and Hartree-Fock approximations.
- Interaction between radiation and matter. Quantization of the electro- magnetic field. Interaction Hamiltonian, emission and absorption.
- Relativistic quantum mechanics and quantum field theory; Dirac equa- tion, quantization of Klein-Gordon and Dirac’s equation.
Literature:
- F. Schwabl, Quantum Mechanics (2007, Springer)
- W. Greiner, Quantum Mechanics, An Introduction (Vol. 4, 2001, Springer)
- C. Cohen-Tannoudj, Quantum Mechanics 2 (2009, de Gruyter)
- D. J. Tannor, Introduction to Quantum Mechanics (2007, Univ. Science)
Theoretical Quantum Optics
Dozent: Dr. Stefan Yoshi Buhmann
Zeit: 4 + 2 st., Di, Do 14-16
Ort: HS II
Beginn: 18.10.2016
Übungen: Dr. Vyacheslav Shatokhin, t.b.a.
Program:
Quantum Optics is the study of light (photons) and its interactions with microscopic matter (atoms) in the non-relativistic limit, i.e. at energies where particle creation does not have to be taken into account. Quantum systems involving few photons and atoms have been studied very successfully in modern table-top experiments, making many of the counter-intuitive phenomena predicted by quantum theory accessible in paradigmatic ways. In this lecture, we will introduce the underlying theoretical framework, methods, devices and phenomena necessary in order to participate in this very active area of physics. Inter alia, we will cover the following topics:
Part I: Photons
- Quantisation of the electromagnetic field
- Quantum states of light
- Wigner functions
- Photodetector
- Beam splitter
- Quantum state tomography
- Entanglement
Part II: Atoms & Photons
- Atom-field coupling
- Optical Bloch equations
- Cavity quantum electrodynamics and Jaynes-Cummings model
- Resonance fluoresence
Prerequisits:
- Theoretical Physics (BSc): Mechanics and Special Relativity
- Theoretical Physics (BSc): Electromagnetism and Optics
- Theoretical Physics (BSc): Quantum Mechanics
Literature:
Theoretical Quantum Optics:
- W. Vogel, D.-G. Welsch: Quantum Optics
- R. Loudon: The Quantum Theory of Light
- R. R. Puri: Mathematical Methods of Quantum Optics
Atom-field Interactions:
- C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg: Photons & Atoms
Experimental Quantum Optics:
- S. Haroche, J.-M. Raimond: Exploring the Quantum
Introduction to General Relativity
Dozent: Dr. Christian Steinwachs
Zeit: 4 + 2 st., Mo, Di 10-12
Ort: SR I
Beginn: 17.10.2016
Program:
- Equivalence principles: Minkowski space, Poincare group, space-time diagrams, world lines, proper time and distance, application to simple phenomena (elevator thought experiments, twin paradox, relativistic Doppler effect, accelerated systems), Lorentz transformations and gen- eral coordinate transformations.
- Differential geometry: manifolds and tangent spaces, forms, metric tensor, integration, Stoke’s theorem, outer derivative, Lie derivative, covariant derivative and Christoffel symbols, parallel transport, geodesics, curvature (Riemann tensor, Weyl tensor, Ricci tensor and scalar), torsion, Killing vectors, Riemann coordinates.
- Dynamics of the gravitational field: Einstein equations, cosmological constant, energy-momentum tensor of matter systems (perfect fluids, point particles, Klein-Gordon and Maxwell theory).
- Effects based on post-Newtonian approximations: red/blue shift effects, rotation of the perihel, effect of gravitation on clocks, deflection of light.
- Gravitational waves: perturbative expansion of field equations, gauge invariance, origin and detection of gravitational waves.
- Classical space times: Minkowski, Rindler, Schwarzschild, Kerr, Reissner-Nordstrøm, Kerr-Newman geometries; Robertson-Walker metrics, Friedmann universes and deSitter space. Discussion of causal structure, geodesic completeness, key coordinate systems and Carter-Penrose diagrams.
- Optional: Einstein-Hilbert action and variational principle.
- Optional: Modern topics in cosmology: CMB, the Inflation Model.
Prerequisits:
Electrodynamics, special relativity, Lagrangian mechanics
Literature:
Particle Detectors
Dozent: Dr. Susanne Kühn, apl Prof. Dr. Ulrich Landgraf
Zeit: 4 st., Do. 10-12, Fr. 8-10
Ort: SR Gustav-Mie-Haus
Beginn: 20.10.2016
Übung: 2 st, n.V.
Programme:
In this lecture the principles of particle detection, the basic measurement concepts and technical realisations are presented. After the discussion of individual detector components and detection principles, complete, large-scale detector systems in particle and astro-particle physics are discussed. In addition, some selected applications in medical imaging and other areas are presented.
Topics:
- Basic interactions of charged and neutral particles
- Measurement of ionisation
- Position and momentum measurements
- Time measurements
- Energy measurement in calorimeters
- Particle identification
- Detector systems in particle and astro-particle physics
- Selected applications in other areas
Prerequisits:
Bachelor studies, Experimental Physics V (Nuclear and Particle Physics)
Literature:
- H. Kolanoski und N. Wermes, Teilchendetektoren, Springer Verlag
- K. Kleinknecht, Detectors for Particle Radiation, Cambridge University Press, 2nd edition (2008)
- W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer Verlag
- C. Grupen, Teilchendetektoren, BI Wissenschaftsverlag
Advanced Atomic and Molecular Physics
Dozent: apl Prof. Dr. Marcel Mudrich
Zeit: 4 + 2 st., Mo 12-15, Mi 16-18
Ort: Mo SR GMH, Mi SR Westbau 2.OG
Beginn: 17.10.2016
Tutorials: Fr 13-15, SozR GMH
Program:
- Light-matter interaction: scattering, absorption and emission of light, dressed states, coherence, strong fields
- Scattering of atomic and molecular systems
- Properties of diatomic molecules: vibrations and rotations
- Properties of polyatomic molecules: electronic states, molecular symmetries, chemical bonds
- Modern AMO applications in science and technology
Prerequisits:
Experimental Physics I-IV
Literature:
Advanced Particle Physics
Lecturer: Prof. Dr. Karl Jakobs, Dr. Frederik Rühr
Time: 4 + 2 st., Mo, Di 8-10
Place: SR Gustav-Mie-Haus
Start: 24.10.2016
Program:
- Introduction
- CP violation
- Neutrino physics
- Quantum electrodynamics (Theoretical introduction, exp. tests, lepton-proton scattering)
- Quantum Chromodynamics (Theory and experimental tests)
- Electroweak theory (phenomenology, experimental tests at LEP and hadron colliders)
- Physics of the Higgs boson
- Search for supersymmetry and other extensions of the Standard Model
Building on the knowledge acquired in the course Experimental Physics V (Kerne und Teilchen), the Standard Model of particle physics is discussed in detail. Besides the phenomenology, experimental tests at colliders are presented, including recent measurements performed at the CERN Large Hadron Collider. Problems of the Standard Model which motivate the search for extensions will be discussed as well, together with the present status of these searches.
The lectures are complemented by exercises, including computer simulations, with the aim to provide a solid foundation in experimental particle physics.
Prerequisits: Experimentalphysik VI, Kern- und Teilchenphysik
Literature:
- F.Halzen und A.D.Martin, Quarks & Leptons, John Wiley Verlag.
- P. Schmüser, Feynman-Graphen und Eichtheorien für Experimentalphysiker, Springer Verlag.
- D. Griffiths, Einführung in die Elementarteilchenphysik, Akademie Verlag.
Advanced Condensed Matter I: Solid State Physics
Dozent: apl Prof. Dr. Bernd von Issendorff
Zeit: 4 + 2 st., Di, Mi 12-14
Ort: HS II
Beginn: 18.10.2016
Program:
- Atomic structure of matter
- lattice dynamics, phonons
- electronic structure of materials
- optical properties
- magnetism/superconductivity
Prerequisits: Experimentalphysik I-III
Literature:
Astrobiology
Dozent: Prof. Dr. Svetlana Berdyugina
Zeit: 3 + 2 st, Do 14-17
Ort: SR Kiepenheuer-Institut
Beginn: 27.10.2016
Lecture link
Programme:
Astrobiology is the science that addresses the questions on the origins, evolution, distribution, and future of life in the Universe. Organic matter is a fundamental constituent of living systems and represents the substance from which life has been generated on the early Earth. The distribution of organic matter in the Universe has a direct influence on where life could originate. In this lecture course we will examine the major environments in which organic matter is created, including debris of the interstellar medium, organic-rich circumstellar envelopes, solar nebula, and the prebiotic Earth. We will study the main energy sources for the life and learn how to find life on exoplanets. The course is given in English.
Prerequisits:
Literature:
Physics of Medical Imaging Methods
Dozent: apl. Prof. Dr. Michael Bock
Zeit: 2 + 1 st., Do 12-14
Ort: Uniklinik, Breisacher Str. 60a, Seminarroom "Big Green"
Übungen: 1 st. n.V.
Beginn: 20.10.2016
Program:
Medical imaging is becoming increasingly important in the detection of disease, in the management of the patients, and in the monitoring of a therapy. In this lecture the physical basics of different medical imaging technologies will be presented, and different clinical application scenarios will be discussed. The following topics will be addressed:
- overview over the physics of medical imaging
- Magnetic Resonance Imaging (MRI)
- magnetisation, Bloch equations, relaxation times T1 and T2
- spin gymnastics and image contrast
- magnets, gradients and radio-frequency coils
- quantitative MRI
- functional MRI, flow, diffusion, perfusion measurements
- Nuclear Medicine
- principles of radio-tracer detection
- scintigraphy
- single photon emission computed tomography (SPECT)
- positron emission tomography (PET)
- ultrasound (US)
- sound generation and propagation in tissue
- US imaging
- Doppler US
- therapeutic applications of US (Lithotrypsy)
- X-ray Imaging
- properties and generation of X-rays
- fluoroscopy
- computed tomography
- image reconstruction from projections
- role of medical imaging in
- the detection of disease
- in patient management
- therapy monitoring
Prerequisits:
Literature:
- Oppelt A: Imaging Systems for Medical Diagnostics
- Dössel O: Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung
Advanced Crystallography: Crystallographic Methodology
Dozent:PD Dr. A. Danilewsky
Zeit: 2 st., Fr 9-11
Ort: R 01 015 (HS 209, Hermann-Herder-Str. 5)
Beginn: 21.10.2016
Program:
- Fundamentals of crystal growth basics and methods is given. The overview is followed by a discussion of current aspects of bulk crystal growth for scientific and commercial production. These aspects are the use of external fields under high pressure and gravity fields like microgravity.
- The principles of thermodynamic equilibrium in growth systems are introduced and examples are applied.
- The problems of large industrial crystals and the solution with the use of simulation tools are presented.
Prerequisits:
Basic knowledge of solid state physics and crystallography
Literature:
- Hurle, D.T.J. (ed.) (1993-1994): Handbook of Crystal Growth, vols 1a-2b. Elsevier, Amsterdam, 1352.
- Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (Eds.) (2010): Handbook of Crystal Growth. Springer, Berlin, 1818.
- Duffar, T. (Ed.) (2010): Crystal Growth processes based on capillarity. Wiley, Chichester, 566.
- Rudolph, P. Handbook of Crystal Growth (2015), 2nd Ed. vols 1a-2b. Elsevier, Amsterdam.
Advanced Crystallography: Crystallographic Methodology
Dozent:Dr. Semen Gorfman
Zeit: 2 st., Di 9-11
Ort: R 01 015 (HS 209, Hermann-Herder-Str. 5)
Beginn: 18.10.2016
Program:
The Crystallographic Methodology course provide the knowledge basis to understand the correspondence of the crystal structure and its physical properties. Topics are the crystallographic terminology, the symmetry of atomic arrangements in and the analytical characterisation methods. The students become competent in applying the basic principles of crystal lattices and symmetry to crystallographic analytical problems, especially in X-ray crystallography.
The course starts with crystallographic notation and a short introduction of the concepts of symmetry, followed by applied aspects of group theory, black and white groups, and colour groups and their applications. The concept and examples of quasi-crystals will be discussed.
Prerequisits:
Basic knowledge of solid state physics and crystallography
Literature:
- Vainshtein, B.K. (1994): Fundamentals of Crystals, 2nd Ed. Springer, Berlin
- Haussühl, S. (2007): Physical properties of crystals (chapter 1). Wiley-VCH, Weinheim
- Borchardt-Ott, W., Sowa H. (2013): Crystallography. Springer, Berlin
Theory and Modeling of Materials: Theoretical models for magnetic properties of materials
Dozent: apl. Prof. Dr. Christian Elsässer
Zeit: 2 + 1 st., Fr 8-10
Ort: SR I
Übungen: 14-tägig, 2 st., Ort und Zeit n.V.
Beginn: 21.10.2016
Program:
(In englischer oder deutscher Sprache nach Vereinbarung.)
The series of one- or two-semester elective-subject lectures introduces theo- retical models and computational methods of solid-state physics for the de- scription of many-electron systems, by means of which cohesion and struc- ture, physical, chemical, or mechanical properties of perfect crystals and real materials can be understood qualitatively and calculated quantitatively on a microscopic fundament.
Prerequisits:
Theoretical physics and solid-state physics on the level of a BSc in Physics
Literature:
recommended literature will be announced in each lecture
Quantum Field Theory II
Dozent: JProf. Dr. Harald Ita, Prof. Dr. Fernando Febres Cordero
Zeit: 4 st., Mo 14-16, Mi 8-10
Ort: SR I
Übungen: Fr 12-14, SR I
Beginn: 17.10.2016
Lecture link
Program:
- Path Integral, perturbation theory, Feynman diagrams
- Gauge theories and their quantisation, BRST symmetry
- Gauge theory of strong interaction, quantum corrections and renormalisation
- Jet production in lepton collisions
- Deep inelastic scattering
- Parton Model for hadron collisions, parton distribution functions, DGLAP evolution
- Quantum effects in Drell-Yan process
Prerequisits:
QFT I, Electrodynamics and Special Relativity
Literature:
Textbooks:
- Peskin/Schroeder: "An Introduction to Quantum Field Theory"
- Schwartz, "Quantum Field Theory and the Standard Model"
- Coleman: "Notes from Sidney Coleman's Physics 253a" available online
- Itzykson/Zuber: "Quantum Field Theory"
- Weinberg: "The Quantum Theory of Fields, Vol.1,2"
- Sexl, Urbantke: "Relativität, Gruppen, Teilchen"
- Cvitanovic: "Field Theory", the Nordita 1983 Lecture notes available online
More advanced Textbooks:
- Böhm/Denner/Joos: "Gauge Theories of the Strong and Electroweak Interaction"
- Nakahara: "Geometry, Topology and Physics"
Experimental Polymer Physics
Dozent: Prof. Dr. Günter Reiter
Zeit: Do, Fr 8-10
Ort: HS I
Beginn: 20.10.2016
Lecture link
Program:
Polymere sind aus dem täglichen Leben und der Technologie nicht mehr wegzudenken, wenn man z.B. an Materialien wie PET-Flaschen und PVC, Nylon, Teflon oder Gummis denkt. Auch in der Natur sind Biopolymere allgegenwärtig, wie z.B. DNA, Proteine oder Zellulose. Die Vorlesung gibt eine Einführung in die experimentellen und theoretischen Konzepte zum Verständnis und der Beschreibung von Polymersystemen. Dabei werden sowohl angewandte und Materialaspekte diskutiert - wie das Fließen von Polymeren, Elastomere und kristalline Polymere - als auch aktuelle Themen aus der Grundlagenforschung wie z.B. der Glasübergang, die Dynamik in eingeschränkten Geometrien und Selbstassemblierung. Die Vorlesung behandelt grundlegende theoretische Konzepte und anschauliche Experimente, wird mit einfachen Einzelkettenphänomenen beginnen und dann stufenweise die komplexeren Strukturen und Dynamiken in Polymerlösungen, -schmelzen und -mischungen entwickeln.
On demand this lecture can be given in English.
Prerequisits:
Grundvorlesungen und etwas Thermodynamik
Literature:
- G. Strobl, The Physics of Polymers
- Colby & Rubinstein, Polymer Physics
Photonic Microscopy
Dozent:
Prof. Dr. Alexander Rohrbach,
Dr. Dominic Ruh
Zeit: 3 + 2 st., Mi 13-16
Ort: SR I
Beginn: 19.10.2016
Program:
- Microscopy: History, Presence and Future
- Wave- and Fourier-Optics
- 3D optical imaging and information transfer
- Contrast enhancement by Fourier-filtering
- Fluorescence – basics and techniques
- Scanning microscopy: from confocal to 4pi microscopy
- Microscopy with self-reconstructing beams
- Optical tomography
- Nearfield and evanescent field microscopy
- Super-resolution using structured illumination
- Multi-Photon-Microscopy
- Super resolution by switching single molecules
About the lecture:
The scientific breakthroughs and technological developments in optical microscopy and imaging have experienced a real revolution over the last 10-15 years. Hence, the 2014 Nobel-Prize for super-resolution microscopy could be seen as a logical consequence. This lecture gives an overview about physical principles and techniques used in modern photonic imaging.
Goals:
The student should learn how to guide light through optical systems, how optical information can be described very advantageously by three-dimensional transfer functions in Fourier space, how phase information can be transformed to amplitude information to generate image contrast. Furthermore one should experience that wave diffraction is not reducing the information and how to circumvent the optical resolution limit. The student should learn to distinguish between coherent and incoherent imaging, learn about modern techniques using self-reconstructing laser beams, two photon excitation, fluorophores depletion through stimulated emission (STED) or multi-wave mixing by coherent anti-Stokes Raman scattering (CARS). The lecture has an ongoing emphasis on applications, but nevertheless presents a mixture of fundamental physics, compact mathematical descriptions and many examples and illustrations. The lecture aims to encompass the current state of a scientific field, which will influence the fields of nanotechnology and biology/medicine quite significantly.
In the tutorials the contents of the lecture will be strengthened and consolidated. In particular transfer thinking will be trained. The students must work on the weekly distributed exercises and then present the results in class after one week. The solutions of the more difficult exercises might be presented by the tutor.
Prerequisits:
Literature:
Biophysics of cardiac function and signals
Dozent:Dr. Gunnar Seemann, Prof. Dr. Peter Kohl, Dr. Franziska Schneider, Dr. Remi Peyronnet
Zeit: 2 + 1 st., Fr 12-14
Ort: SR III
Übungen: 1 st. n.V.
Beginn: 21.10.2016
Program:
The basic concept of this lecture is to examine a biological system, analyse it and define mathematical equations in order to describe the system. In this lecture, the heart is used as this system. The students learn the electrical and mechanical function of the heart and its modelling. Additionally, the bioelec-trical signals that are generated in the human body are described and how these signals can be measured, interpreted and processed. The content is explained both on the biological level and based mathematical modelling.
- Cell membrane and ion channels
- Cellular electrophysiology
- Conduction of action potentials
- Cardiac contraction and electromechanical interactions
- Optogenetics in cardiac cells
- Numerical field calculation in the human body
- Measurement of bioelectrical signals
- Electrocardiography
- Imaging of bioelectrical sources
- Biosignal processing
Prerequisits:
Basic interest in biology and computational modelling. Knowledge in Matlab or Python are beneficial
Literature:
- lecture slides
X-ray Analysis - Applications in Material and Life Sciences
Dozent: Prof. Dr. Alex Ulyanenkov
Zeit: 2 + 1 st., Mo 10-14 (14-täglich)
Ort: SR II
Beginn: 24.10.2016
Lecture link
Program:
The faculty of Mathematics and Physics offers a course on modern X-ray Analysis: Applications in Material and Life Sciences. The course covers the basics of X-ray scattering processes, the fundamental theories describing the scattering of X-ray radiation from solid and soft matter, the instrumentation for X-ray experiments and data analysis techniques. There are multiple experimental setups and interpretation methods discussed in application to various objects: from semiconductors to biological cells and proteins.
Abstract:
X-rays have been proven to be a powerful and reliable tool in studying a large diversity of micro- and nanoscale objects. The wavelength of X-rays is a perfect fit to the typical sizes of basic structures used in all modern technologies and science: crystallographic lattice in semiconductor thin films; biological molecules in protein crystallography; nanoscale objects like quantum dots and quantum wires in optoelectronics; and many others. This fact initiated the intensive development of various measurement techniques and instrumentation to satisfy the large variety of requirements coming from scientific and industrial communities. Information on the intrinsic structure of samples is further obtained from the detailed analysis of the scattered and detected X-ray intensities, which demands robust theoretical methods for data interpretation. The experimental data obtained from modern X-ray
equipment contains a large amount of information hidden in the fine structure of the measured X-ray spectra. This fine structure became measurable due to the essential progress in the development of X-ray optics, detectors and X-ray sources. The growing complexity of both experiments and structure of the samples constantly stimulates the
further development of the theoretical methods for data analysis.
Students will learn about awide variety of the applications of X-ray methods in modern material researches, biological sciences, proteomics, technological processes and quality control. The obtained knowledge can be later used and applied both in scientific and academic studies and in industrial sectors for R&D and QA purposes. The area of applications covers the whole domain of natural sciences and technologies starting from structure determination of proteins and biological objects on one side and ending by the investigation of atomic ordering in modern nanostructures. Thus, the subject of course is useful for a large audience, and the market of X-ray analytical instrumentation reflects this wide application area.
There are multiple X-ray techniques used for sample evaluation, each of which is suitable for different kinds of the structures. X-ray Bragg diffraction probes samples possessing a crystallographic structure and characterizes the structure on a broad scale, from micro-crystallites in polycrystalline materials to the properties of coherent epitaxial samples averaged over large areas. The specular Xray reflectivity characterizes surface and subsurface amorphous or crystalline layers in view of their electron density profiles, layer thicknesses, and interface roughness. The X-ray small-angle scattering method exposes valuable information on the distribution and characteristics of the non-uniformities inside or on the surface of the sample. The pair-distribution function method permits us to obtain the interatomic distances for amorphous, crystalline and quasi-crystallinematerials.
Preliminary programme:
Introduction in X-ray analysis and basics of X-ray diffraction
X-ray scattering and interaction with the matter
Advantages of X-rays
Techniques and methods
Fundamentals of crystallography
X-ray instrumentation
Lab equipment
Synchrotrons
Components: Sources, Optics, Detectors
Measurements
Theories of X-ray scattering
Basics of scattering theory
Kinematical theory
Dynamical diffraction theory
Resolution function
Diffraction from lateral nanostructures
X-ray investigation techniques
Powder diffraction
High-resolution X-ray diffraction
X-ray Reflectivity
Small-angle X-ray scattering
Residual stress analysis
Texture analysis
Protein crystallography and single crystals
Small molecules X-ray analysis
Pair-distribution function method
X-ray imaging
X-ray topography
Applications of X-ray methods
Material Research
Proteomics and Small molecules
Mineralogy and Petrochemical
Quality Control
Preclinical medicine, micro-tomography
Cement, Environmental, Forensic, Heritage
Semiconductors
Metallurgy, Airspace and Automotive
Software for X-ray data interpretation
Powder X-ray diffraction
Biological SAXS
Thin film analysis
Texture and stress
Structure determination
Prerequisits:
Fundamental knowledge in Physics
Literature:
- A.Benediktovitch, I.Feranchuk, A.Ulyanenkov, Theoretical Concepts of X-ray Nanoscale Analysis, Heidelberg: Springer, 2013
- U.Pietsch, V.Holy, T.Baumbach, High-Resolution Xray Scattering: From Thin Films to Lateral Nanostuctures, 2nd ed., Springer, Heidelberg, 2004
- J.Daillant and A.Gibaud, X-ray and Neutron Reflectivity: Principles and Applications, Springer, Heidelberg, 1999
- R.E.Dinnebier and S.J.L.Billinge, Powder Diffraction: Theory and Practice, RSC Publishing, Cambridge, 2008.
Modern Astronomical Instrumentation
Dozent: Prof. Dr. Oskar von der Lühe
Zeit: 2 + 1 st., Mi 14-16
Ort: SR Kiepenheuer-Institut
Beginn: 19.10.2016
Lecture link
Program:
This lecture provides an overview of instruments in astronomy and addresses the following topics:introduction to geometrical optics and aberration theory, design and construction of astronomical telescopes throughout the e. m. wave spectrum on the ground and in space, post-focus instrumentation for astronomical telescopes, spectroscopy and polarimetry, detectors for astronomy, radio telescopes, detection of astroparticles and gravitational waves.
Topics:
- Introduction to geometrical optics and aberration theory
- Design and construction of astronomical telescopes for the whole spectrum of e. m. waves on the ground and in space
- Post-focus instrumentation for astronomical telescopes
- Spectroscopy and polarimetry
- Detectors for astronomy - Radio telescopes
- Detection of astroparticles and gravitational waves.
Prerequisits:
Experimental Physics I-IV,
Completion of an introductory course on astrophysics (e. g. bachelor course) is highly recommended to attend this course.
Literature:
- P. Léna, Observational Astrophysics, Springer
- Landolt - Börnstein Group VI Vol. 4 Astronomy, Springer
- Lecture Script (through ILIAS)
Nonequilibrium Physics - An Introduction
Dozent: PD Dr. Falko Ziebert
Zeit: 2 + 1 st, Mi 12-14
Ort: SR III
Beginn: 19.10.2016
Lecture link
Programme:
We will give an introduction to nonequilibrium physics, both on the macroscopic (thermodynamic) and the microscopic (kinetic) level. We will start by generalizing equilibrium thermodynamics to spatial degrees of freedom. By allowing for small currents (of heat, or particles, for instance), the theory of linearly irreversible thermodynamics will be developed. A major insight will be the occurrence of cross-coupling effects, like the Peltier and Soret effect, obeying important symmetries (Onsager relations, Nobel Prize in Chemistry 1968). The occurrence of instabilities (I. Prigogine, Nobel Prize in Chemistry 1977) will also be discussed.
We will then switch to the microscopic scale and derive the famous Boltzmann equation, the foundation of transport theory. We will solve it by several approximation methods and use it to derive macroscopic balance equations, yielding a microscopic foundation of the processes described in the first part of the lecture.
Finally, we will discuss few current research topics, like the use of Boltzmann-type equations in the modeling of 'active' systems (collective motion of animals, dynamics of cellular extracts) and the occurrence of nonequilibrium phase transitions in boundary-driven transport (asymmetric exclusion processes).
Prerequisits:
equilibrium thermodynamics
Literature:
- S. De Groot & P. Mazur : Grundlagen der Thermodynamik irreversibler Prozesse
- L. Reichl : A modern course in statistical physics
- Landau & Lifshitz Vol 10: Kinetics