Uni-Logo

Kommentare Sommersemester 2023

Veranstaltungsbeschreibungen in Deutsch und für englisch-sprachige Master-Veranstatungen in Englisch. Course descriptions in German and for Master courses in English.

Mathematik I für Studierende der Physik

Dozent: Prof. Dr. Tanja Schilling
Zeit: 4 st., Mo 12-14, Mi 8-10
Ort: HS I
9 ECTS
Beginn: Mi 19.04.2023
ILIAS


Programm:

  • Topologien im Rn
  • Ableitung (mehrkomponentiger) Funktionen, auch in mehreren Variablen, Ableitungsregeln
  • Taylor-Entwicklung
  • Gewöhnliche Differentialgleichungen
  • Koordinatensysteme, speziell Polar-, Zylinder- und Kugelkoordinaten
  • Integration (mehrkomponentig), Wegintegration, Flächen- und Volumenintegration, Gauß‘scher und Stokes’scher Satz
  • Symmetrische Bilinearformen: Orthogonalbasen, Sylvester'scher Trägheitssatz
  • Euklidische und Hermitesche Vektorräume: Skalarprodukte, Kreuzprodukt, Gram'sche Determinante
  • Gram-Schmidt-Verfahren, orthogonale Transformationen, (selbst-) adjungierte Abbildungen, Spektralsatz, Hauptachsentransformation
  • Affine Räume
  • Fourier Analyse
  • Distributionen

 

Vorkenntnisse:

Inhalte der Grundvorlesungen Analysis I und Lineare Algebra I
 

Einführende Literatur:

 


Experimentalphysik II (Elektromagnetismus und Optik)

Dozent: Prof. Dr. Oliver Waldmann
Zeit: 4 st., Mo, Mi 10-12,
Ort: Großer HS
Fragestunde: Mi 12-14, HS I
6 ECTS
Beginn:
ILIAS

 

Programm:

Die Vorlesung Experimentalphysik II vermittelt die experimentellen Grundlagen der Elektrizität, des Magnetismus und der Optik. Im Zentrum der Vorlesung stehen Demonstrationsexperimente. Die Vorlesung wird durch Übungen begleitet.

Folgende Themen werden behandelt:

  • Elektrische Ladung
  • Elektrische Felder
  • Gaußscher Satz und elektrisches Potential
  • Kapazität
  • Elektrischer Strom, Widerstand und Stromkreise
  • Magnetfelder
  • Strominduzierte Magnetfelder, Induktion und Induktivität
  • Wechselstrom und Schwingkreise
  • Maxwellgleichungen und elektromagnetische Wellen
  • Geometrische Optik
  • Reflexion und Brechung von Licht
  • Licht als Welle: Interferenz und Beugung

 

Vorkenntnisse:

Experimentalphysik I
 

Einführende Literatur:

  • W. Demtröder, Experimentalphysik 2, Elektrizität und Optik, Springer-Verlag
  • Tipler / Mosca, Physik, Springer Verlag
  • J. Heintze, Lehrbuch der Experimentalphysik, Band 3: Elektrizität und Magnetismus, Springer Verlag
  • Bergmann / Schäfer, Lehrbuch der Experimentalphysik, Band 2, Elektromagnetismus, Verlag de Gruyter

 


Experimentalphysik IV (Atom-, Molekül- und Festkörperphysik)

Dozent: apl. Prof. Dr. Bernd von Issendorff
Zeit: 4 st., Di 12-14, Do 8-10
Ort: Großer HS
7 ECTS
Beginn:
ILIAS


Programm:

  • Komplexe atomare Systeme und periodisches System
  • Struktur und Eigenschaften von Molekülen
  • Struktur und Eigenschaften von Festkörpern und Oberflächen

 

Vorkenntnisse:

Experimentalphysik I-III


Einführende Literatur:

 


Theoretische Physik I (Mechanik und Spezielle Relativitätstheorie)

Dozent: Prof. Dr. Jens Timmer
Zeit: 4 st., Di 10-12, Do 12-14
Ort: HS I
7 ECTS
Beginn:
ILIAS
 

Programm: 

  • Mechanik des Punktteilchens
  • Systeme von Massenpunkten
  • Bewegung in Zentralkraftfeldern
  • Inertialsysteme und beschleunigte Bezugssysteme
  • Symmetrien, Invarianzen und Erhaltungsgrößen
  • Methode der Lagrange-Multiplikatoren
  • Hamiltonsches Prinzip
  • Lineare Schwingungen
  • Hamilton-Mechanik
  • Dynamik starrer Körper
  • Spezielle Relativitätstheorie

 

Vorkenntnisse:

Theoretische Physik I
 

Einführende Literatur:

  • V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer
  • H. Goldstein, C.P. Poole, J.L. Safko, Klassische Mechanik, Wiley-VCH
  • J. Honerkamp, H. Römer, Grundlagen der Klassischen Theoretischen Physik, Springer
  • F. Kuypers, Klassische Mechanik, Wiley-VCH
  • L.D. Landau, E.M. Lifshitz, Lehrbuch der Theoretischen Physik, Band I, Akademie-Verlag
  • W. Nolting, Grundkurs Theoretische Physik, Band 1, 2 und 4, Springer
  • H. Römer, M. Forger, Elementare Feldtheorie, VCH

 


Theoretische Physik III (Quantenmechanik)

Dozent: Prof. Dr. Gerhard Stock
Zeit: 4 st., Mo, Do 10-12
Ort: HS I
8 ECTS
Beginn:
ILIAS


Programm: 

  • Schrödingergleichung
  • Eindimensionale Probleme
  • Wasserstoffatom
  • Spin
  • Drehimplus
  • Störungstheorie
  • ...
  • EPR -Paradoxon und Bell'sche Ungleichungen

 

Vorkenntnisse:

Theoretische Physik I-II, Analysis und Lineare Algebra
 

Einführende Literatur:

  • F. Schwabl. Quantenmechanik
  • T. Fließbach. Quantenmechanik

 


Experimentelle Methoden

Dozent: Prof. Dr. Karl Jakobs
Zeit: 2 st., Di 8-10
Übung: 3 st. (Wahlpflichtbereich), 2 st. (BOK)
Ort: HS I
7 ECTS (Wahlpflichtbereich)
5 ECTS (BOK Vorlesung)
Beginn:
ILIAS


Programm:

  • Statistische Methoden der Datenanalyse
  • Datenanalyse mit ROOT
  • Grundlagen der Elektronik
  • Digitale und analoge Messtechnik
  • Grundlagen von Detektoren

 

Hinweis:
Die erfolgreiche Teilnahme an dieser Veranstaltung ist Voraussetzung zur Teilnahme am Physiklabor für Fortgeschrittene.

 


Seminar Physik: Einführung in Maschinelles Lernen

Dozenten: Dr. Michael Böhler, Prof. Dr. Markus Schumacher
Zeit: 2 st,
4 ECTS
ILIAS

Themen (vorläufig):

  • Lineare Regression, Übertraining, RIDGE- und LASSO-Regularisierung
  • Logistische Regression und Minimierungsalgorithmen (SDG, ADAM,..)
  • Lineare/Quadratische Diskriminantenanalyse und Vergleich zu Log. Regression
  • Einführung in Trees, Ensemblemethoden, Boosted Decision Trees und Ada-Boost
  • Boosted Regression Trees und Gradient Boost
  • Random Regression Forrests und Grid/Random-Suche für Hyperparameter
  • Random Decision Forrests und k-fache Kreuzvalidierung
  • Einführung in Neuronale Netzwerke (NN), Klassifizierungs-NN, Aktivierungfunktionen, Verlustfunktion
  • Regressions-NN , Unterschiede zu Klassifizierungsnetzwerken, Regularisierung mit EarlyStopping
  • Klassifizierungsnetzwerke und Regularisierung mit Dropout
  • Regressionsnetzwerke und Regularisierung mit L2-Norm
  • Convolutional Networks, Bilderkennung

 


Seminar Physik: Classical and Quantum Chaos

Dozenten: Prof. Dr. Andreas Buchleitner
Zeit: 2 st,
4 ECTS

Themen:

 


Einführung in die Moderne Digitalelektronik

Dozent: apl. Prof. Dr. Horst Fischer
Zeit: 2 st., Mo-Fr 10-12
Ort: SR I
Übungen: Mo-Fr 14-16, CIP Pool II
7 ECTS
Blockkurs: 24.07.-04.08.2023

Programm:

Die Teilnehmenden erhalten einen Überblick über die wesentlichen Anwendungsgebiete und Methoden in der heutigen Digitalelektronik. Sie lernen an Hand von Beispielen die Konzepte und Funktionsweise digitaler Schaltkreise kennen und werden in die Programmierung von logischen Bausteinen eingeführt. In der praktischen Übung werden Logikbausteine (FPGA) selbst programmiert.

Folgende Themen werden behandelt:

  • Anwendungsfelder der Digitalelektronik
  • Grundlagen und logische Verknüpfungen
  • Schaltkreisfamilien
  • Rechenschaltungen
  • programmierbare Bausteine (FPGA und CPLD)
  • Zahlen und Speicher
  • Automaten
  • Systeme zur Datenaufzeichnung

 

Vorkenntnisse:

 

Einführende Literatur:

  • Urbansk, Digitaltechnik (Springer)
  • Tietze Schenk, Halbleitertechnik (Springer)

 


Hydrodynamik

Dozent: Prof. Dr. Antonio Ferriz-Mas
Zeit: Mi, Do 12:30-14:00, 3 st.
Ort: SR Westbau 2.OG
Übungen: 2 st.
7 ECTS
Vorlesungs-Programm (pdf)

Programm:

Die Themen 1 bis 8 sind die Kernthemen. Maximal zwei der Wahlthemen 9-10-11 können je nach Interesse und Zeit noch behandelt werden.

  1. Kinematik des Kontinuums. Euler’sche und Lagrange’sche Darstellungen.
  2. Kräfte in der Kontinuumsmechanik.
  3. Grundgleichungen der Kontinuumsmechanik.
  4. Newton’sche Flüssigkeiten.
  5. Energiegleichung für eine Newton’sche Flüssigkeit.
  6. Zirkulation und Vortizität.
  7. Inkompressible viskose Strömungen.
  8. Die hydrodynamischen Gleichungen in Erhaltungsform.
  9. Wahlthema: Schallwellen in einem homogenen Medium.
  10. Wahlthema: Rotierende Flüssigkeiten.
  11. Wahlthema: Der Virialsatz und astrophysikalische Anwendungen.

 

Vorkenntnisse:

Die Vorlesung richtet sich an Studenten der Physik oder der Mathematik. Keine Vorkenntnisse in Hydrodynamik werden vorausgesetzt. Solide Grundkenntnisse in Differential- und Integralrechnung sind erforderlich. Man sollte eine Vorlesung in klassischer Mechanik (Theo 1) gehört haben.
 

Literatur: 

  • Elementary Fluid Dynamics. D. J. Acheson, Oxford University Press (1990).
  • An introduction to fluid mechanics. G. K. Batchelor, Cambridge University Press (1970)
  • Course of Theoretical Physics (Vol. VI: Fluid Mechanics). L. D. Landau & E. M. Lifschitz, Pergamon Press Ltd. (1959)
  • A First Course in Fluid Dynamics. A. R. Paterson, Cambridge University Press (1983)
  • The Navier-Stokes equations: A classifications of flows and exact solutions. Norman Riley & Philip Drazin, London Mathematical Society Lecture Notes Series 334, Cambridge University Press (2006, 2007)
  • Physical fluid dynamics. D. J. Tritton, Oxford Science Publications. [2nd edition 1988]
  • Theoretical fluid dynamics. Bhimsen K. Shivamoggi, serie Mechanics of fluids and transport processes, Martinus Nijhoff Publishers, Dordrecht, [2d edition 1998].

 


Vorkurs Einführung in Programmieren mit Python

Dozent:Dr. Michael Böhler
Zeit: Blockveranstaltung ganztägig, Vorlesungsbeginn: Mi 12.04 - Fr. 14.04.2023
Vorlesung: täglich 9-12
Übungen: nachmittags 13-16
Ort: HS I
ILIAS
 

Der Vorkurs findet unter Einhaltung der Hygiene- und Abstandsregelungen in Präsenz im Hörsaal I der Physik statt. Der Kurs ist ganztägig und besteht aus Vorlesung und Programmierübungen.

Registrieren Sie sich bitte für den Kurs auf https://ilias.uni-freiburg.de/goto.php?target=crs_2999856&client_id=unifreiburg ("Vorkurs Einführung in Programmieren mit Python des Physikalischen Instituts").


Programm:

Vermittlung von Programmiergrundkenntnisse:
Grundideen der Softwareentwicklung, Variablen, Funktionen, Schleifen, einfache Datentypen (Strings, Tuples, Listen, Dictionaries), Umgang mit Dateien, Modulen, Exceptions und Grundlagen der Objektorientierten Programmierung

 

Vorkenntnisse:

keine
 

Einführende Literatur:

 


Ausgewählte Kapitel der modernen Physik

Dozent: apl. Prof. Dr. Thomas Filk
Zeit: 2 st., Do 16-18
Ort: HS II
Übungen: 2 st. n.V.
5 ECTS
Beginn:
ILIAS


Programm:

Diese Vorlesung richtet sich in erster Linie an Lehramtsstudierende der Physik. Sie kann als Wahlpflichtvorlesung im Master of Education gehört werden oder auch im Bachelor als Spezialvorlesung, falls Mathematik das zweite Hauptfach ist. Inhaltlich deckt diese Vorlesung einige Themen ab, die im normalen Curriculum nicht oder nur am Rande behandelt werden, die aber für zukünftige Lehrer*Innen relevant sind, entweder weil sie im Rahmenlehrplan der Oberstufe vorgesehen sind oder aber zur Motivation der Schüler*Innen beitragen können.
Programm (Auswahl):

  • Standardmodell der Kosmologie
  • elementare Einführung in die Allgemeine Relativitätstheorie
  • elementare Einführung in die Astrophysik
  • Halbleiter und Photovoltaik, etc.
  • Bildgebende Verfahren in der Medizin
  • Physik des Klimas

 

Vorkenntnisse:

Man sollte die Exp I-III sowie die Theo I und II erfolgreich gehört haben. Literatur wird in den jeweiligen Vorlesungsstunden bekannt gegeben. Es soll parallel zur Vorlesung ein Skript erstellt werden.

 


Kompakte Fortgeschrittene Theoretische Physik

Dozent: PD Dr. Steffen Wolf
Zeit: 4 st., Di, Do 12-14
Ort: SR I
7 ECTS
Beginn:
ILIAS
 

Programm:

Diese Vorlesung speziell für Lehramtsstudierende findet zum vierten Mal statt und ist für Studierende nach der neuen Prüfungsordnung (GymPO) eine Pflichtvorlesung. Empfohlen wird die Teilnahme im 4. Fachsemester. Studierende nach der alten Prüfungsordnung (WPO) können wahlweise die Theo IV oder diese Vorlesung hören. Der Schwerpunkt dieser Vorlesung ist die Quantenmechanik, allerdings bezieht sich ein Teil des Inhalts auch auf die Statistische Mechanik. Nach dem aktuellen Modulhandbuch erhalten Sie nach erfolgreicher Teilnahme an dieser Vorlesung und den begleitenden Übungen einen Leistungsnachweis. Die Kriterien werden in der Vorlesung bzw. den Übungen bekannt gegeben. Für Studierende nach der alten Prüfungsordnung kann auch ein benoteter Schein ausgestellt werden. 
 

Vorkenntnisse:

Theoretische Physik I-III
 

Einführende Literatur:

 


Fachdidaktik 2: Diagnostizieren und Fördern im sprachsensiblen Physikunterricht

Dozent: JProf. Dr. Martin Schwichow, Nadja Wulff
(Veranstaltung der Pädagogischen Hochschule)
Zeit: Mo 14:15-15:45
Ort: Pädagogische Hochschule KG 3-111
Beginn: 17.04.2023
Link-LSF PH
 

Um sich anzumelden, erscheinen Sie bitte persönlich zur ersten Sitzung am 17.04.2023. Um an dem Kurs teilzunehmen und auf das PH ILIAS zuzugreifen, benötigen Sie einen PH Account. Bitte beantragen Sie den Account rechtzeitig vor Semesterbeginn. Hier wird beschrieben, wie sie diesen beantragen können:
https://www.face-freiburg.de/studium-lehre/im-studium/uni-lv-finden/

Die Veranstaltung wird nur im Sommersemester angeboten. Studierende, welche noch nicht die Veranstaltung Fachdidaktik 1 besucht haben, können trotzdem an dieser Veranstaltung teilnehmen.

 


Didaktik der Modernen Physik

Dozent: Dr. Jens Wilbers (Pädagogische Hochschule)
(Veranstaltung der Pädagogischen Hochschule)
Zeit: Mo 12:00-13:30
Ort: PH KG 3-111
Beginn: 17.04.2023

Dieses Seminar richtet sich an Studierende im M.Ed.

Am Montag, den 17.04.2023, findet von 12:15 Uhr bis 13:30 Uhr eine verpflichtende Vorbesprechung in Raum 111 des KG 3 der PH Freiburg statt.

Für die Teilnahme an der Lehrveranstaltung ist es unbedingt erforderlich, dass Sie 1) einen PH-Account beantragen und 2) bis zum Beginn des Semesters dem ILIAS-Kurs „PHY 630 Didaktik der Modernen Physik/Didaktik der Kursstufe“ für die Veranstaltung beitreten. Um dem Kurs beizutreten, müssen Sie sich mit Ihrem PH-Account in das PH-ILIAS einloggen und dort die Aufnahme beantragen. Falls Sie noch keinen PH-Account besitzen, müssen Sie diesen über HISinOne beantragen. Eine Anleitung hierzu finden Sie unter folgendem Link: https://www.face-freiburg.de/studium-lehre/im-studium/uni-lv-finden/. Bitte beantragen Sie den PH-Account zeitnah, da das Verfahren einige Tage dauern kann und der Account für die erfolgreiche Teilnahme an der Veranstaltung unabdingbar ist.

Bei Fragen zur Veranstaltung wenden Sie sich bitte an Herrn Dr. Wilbers jens.wilbers@ph-freiburg.de .

 


Theoretical Condensed Matter Physics

Lecturer: Dr. Junichi Okamoto, Prof. Dr. Michael Thoss
Time: 4 + 2 st., Mo, Mi 10-12
Room: SR II/III
Tutorials: n.V.
9 ECTS
Start: 17.04.2023
ILIAS

Program:

  • Structure of solids
  • Lattice vibrations: phonons
  • Electronic structure of solids
  • Electron-electron interaction, electron-phonon interaction
  • Magnetism
  • Superconductivity
  • Transport theory

 

Prerequisits:

Theoretical Physics I-IV
 

Literature:

  • M.W. Ashcroft and N.D. Mermin, "Solid State Physics"
  • C. Kittel, "Introduction to Solid State Physics"
  • H. Ibach and H. Lüth, "Solid-State Physics: An Introduction to Principles of Materials Science" (also in German)
  • M. P. Marder, "Condensed Matter Physics"

 


Complex Quantum Systems

Lecturer: apl. Prof. Dr. Heinz-Peter Breuer
Time: 4 + 2 st., Mi, Do 12-14
Room: SR GMH
9 ECTS
Start:
ILIAS

Program:

  • Quantum states
  • Pure and mixed states, density matrices, quantum entropies
  • Composite quantum systems
  • Tensor product, entangled states, partial trace and reduced density matrix
  • Open quantum systems
  • Closed and open systems, dynamical maps, quantum operations, complete positivity and Kraus representation
  • Dynamical semigroups and quantum master equations
  • Semigroups and generators, quantum Markovian master equations, Lindblad theorem
  • General properties of the master equation
  • Pauli master equation, relaxation to equilibrium, correlation functions, quantum regression theorem
  • Decoherence
  • Destruction of quantum coherence through interaction with an environment, decoherence versus relaxation
  • Microscopic theory
  • System-reservoir models, Born-Markov approximation, microscopic derivation of the master equation
  • Applications
  • Quantum theory of the laser, superradiance, quantum transport, quantum Boltzmann equation
  • Non-Markovian quantum dynamics
  • Quantum memory effects, system-environment correlations, information flow, non-Markovian master equations

Prerequisites: Advanced Quantum Mechanics

Literature:

  • H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)
  • M. Hayashi, Quantum Information (Springer, Berlin, 2006)
  • M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
  • C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991)
  • R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987)

 


Introduction to Relativistic Quantum Field Theory

Dozent: Dr. Robert Ziegler (Karlsruhe KIT)
Zeit: 4 st., Di 12-14, Do 14-16,
Ort: HS II
Übungen: Mi 14-16, HS II
Beginn: 18.04.2023

Program:

  • Quantization of scalar fields (Klein Gordon equation, classical field theory, canonical quantization, scattering theory and Feynman diagrams)
  • Vector-boson fields (classical field equations, electromagnetic interactions and the gauge principle, quantization of the electromagnetic field, scalar QED and perturbative evaluation)
  • Dirac fermions (basics of Lie Groups, Lorentz group and its representations, Dirac and Weyl equations, Poincare group and its representations, quantization of free Dirac fields, QED and perturbative evaluation, applications)
  • Quantization with functional integrals

 

Prerequisits:

Quantum Mechanics, Electrodynamics and Special Relativity
 

Literature:

  • Bjorken/Drell: "Relativistic Quantum Mechanics"
  • Bjorken/Drell: "Relativistic Quantum Fields"
  • Itzykson/Zuber: "Quantum Field Theory"
  • Maggiore: "A Modern Introduction to Quantum Field Theory"
  • Peskin/Schroeder: "An Introduction to Quantum Field Theory"
  • Tung: "Group Theory in Physics"
  • Weinberg: "The Quantum Theory of Fields, Vol.1: Foundations"
  • Tung: "Group Theory in Physics"
  • Ramond: "Field Theory: a Modern Primer"
  • Tung: "Group Theory in Physics"
  • Schwartz: "Quantum Field Theory and the Standard Model"

 


Computational Physics: Materials Science

Lecturer: Prof. Dr. Joachim Dzubiella
Time: 4 h, Mi 8-10, Do 10-12
Room: SR Westbau 2.OG
Tutorials: 2 h, n.V.
9 ECTS
Start: 19.04.2023
ILIAS

Program:

Application of computational simulation methods can help to discover or design new materials and investigate (microscopic) structure- (macroscopic) property relationships of a wide range of materials classes, such as metals, composites, nanostructures, electrolyte solvents, as well as polymers, surfactants, or colloidal dispersions. This course will introduce basic statistical concepts as well as programming and simulations techniques with particular focus on methods based on classical Hamiltonians spanning orders of length and time scales, such as Molecular Dynamics and coarse-grained Brownian Dynamics simulations. The students will become familiar with some examples for the different types of interatomic and coarse-grained potentials: e.g., Lennard-Jones, (screened) Coulomb, Hamaker, etc., as well as bonded potentials for molecules and polymers. The course will consist of lectures and hands-on programming exercises and small projects, simulating mostly (interacting) fluids and molecules, using own written code.

Criteria for passing:

For successfully qualifying for the Studienleistung (SL), students must complete, at least an average of 50% of the exercises and attend the tutorials regularly and actively (including the presentation of results). The Prüfungsleistung (PL) consists of a final project or a written exam.


Prerequisits:

Basic knowledge in programming (Python, C/C++) as well as statistical mechanics and thermodynamics.


Literature:

  • Script (will be available via ILIAS)
  • Book: Understanding molecular simulation from algorithms to applications. D. Frenkel and B. Smit. AP Academic Press.
  • Book: Computer simulation of liquids. M. P. Allen and D. J. Tildesley. Oxford University Press. 3rd edition (2017)

 


Advanced Optics and Lasers

Lecturer: Prof. Dr. Giuseppe Sansone
Time: 4 + 2 st., Mi, Do 10-12
Room: SR GMH
9 ECTS
Start:
ILIAS


Program:

In this course, we will discuss the principles of lasers and their application. We will start with the fundamentals of light-matter interaction and the basic principles of lasers. We will continue with a discussion of various laser types, ranging from narrow-bandwidth continuous wave lasers used for high-resolution spectroscopy, to ultrashort-pulsed lasers used to study nonlinear physics and light-induced dynamics on the nano- to femtosecond timescale. We will then discuss nonlinear optical phenomena such as nonlinear wavelength mixing, parametric conversion and their application in modern laser systems. Eventually, we will have an outlook on very recent laser developments. Examples are high harmonic generation, Free Electron Lasers or frequency combs.

The lecture will focus on experimental and some basic theoretical principles. The tutorials include problem sheets as well as practical exercises on different laser systems in our lab.
 

Summary of topics:

  • Light-matter interaction
  • Coherence and interference
  • The laser principle
  • Optical resonators
  • Gaussian beam optics
  • Ultra-short laser pulses
  • Nonlinear optics and parametric amplification
  • Recent laser developments

 

Prerequisits:

Experimental Physics I-IV
 

Literature:

  • W. Lange “Laserphysik”
  • Demtröder “Laserspektroskopie”
  • J. Eichler & H.J. Eichler, Springer, „Laser“
  • F.K. Kneubühl /M.W. Sigrist “Laser”
  • D. Meschede “Optik, Licht und Laser”
  • C. Ruilliere, Springer, "Femtosecond laser pulses“

 


Condensed Matter II: Interfaces and Nanostructures

Dozent: Prof. Dr. Günter Reiter
Zeit: 4 st., Do, Fr 8-10
Ort: HS II
9 ECTS
Beginn:
ILIAS


Program:

The students should get an overview over phenomena which only appear on surfaces and interfaces (e.g. how to make water running uphill?). The course deals with special structural and electronic properties of liquid and solid surfaces as well as their relevance in many fields of modern material science and nanotechnology.
Surfaces between solids and liquids can be found in most of the physical, chemical, biological and geological systems, as well as in many technological processes. Although the number of atoms or molecules at these surfaces is comparatively small, this "minority" can often dominate or even control the behavior of large (macroscopic) systems.

Topics:

  • General description of interfaces: Thermodynamics and kinetics
  • Interaction forces at interfaces: Short- and long range forces, ...
  • Liquids and liquid interfaces: Droplets, bubbles, waves, "liquid beads"
  • Solid-liquid interfaces: Hydrodynamics, capillarity, wetting, ...
  • Structure of solid surfaces: Electronic processes at surfaces
  • Surface processes: Adsorption/desorption, phase transitions
  • Making of well defined solid surfaces: Surface reconstruction, surface transport, ...
  • Growth- and decay: Epitaxy, nucleation, lattice mismatches, mechanical stress
  • Organic layers and nanostructures on surfaces: Directed stucturing of surfaces at nm-scale


Prerequisits:

Experimentalphysik IV (Condensed Matter)
 

Literature:

  • Intermolecular and Surface Forces, With Applications to Colloidal and Biological Systems, Jacob Israelachvili, Academic Press 1995 bzw. Elsevier 2008
  • "Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves" von P.-G. de Gennes, F. Brochard-Wyart und D. Quéré, Springer, New York, 2004
  • John A. Venables, Lecture notes on Surfaces and Thin Films
  • I. Markov, Crystal Growth for Beginners, World Scientific

 


Hadron Collider Physics

Lecturer: Prof. Dr. Markus Schumacher, Dr. Spyridon Argyropoulos
Time: 4 st., Mo, Di 10-12
Room: SR GMH
Tutorials: n.V.
9 ECTS
Start:
ILIAS


Program:

In this lecture Physics at Hadron Colliders is discussed. The focus lies on the discussion of recent physics measurements performed at the Large Hadron Collider (LHC) at CERN. They include experimental tests of the Standard Model, Higgs boson physics and searches for extensions of the Standard Model.

The Program consists of:
- Lectures (4h per week)
- Exercises / tutorials (2 h per week), including computer simulations and analysis of ATLAS physics events

Topics:

  • Accelerators
  • LHC detectors
  • Phenomenology of pp collisions
  • Structure functions, cross sections
  • Particle signatures in LHC experiments
  • Inelastic pp collisions
  • Production of jets, test of perturbative QCD
  • Physics of W and Z bosons
  • The top quark and its properties
  • Search for the Higgs boson, measurements of the properties of the new particle at 126 GeV
  • Search for supersymmetric particles
  • Search for other extensions of the Standard Model


Prerequisits:

Experimental Physics V (Nuclear and Particle Physics)
Particle Physics II (desirable)
 

Literature:

  • F. Halzen, A.D. Martin, Quarks and Leptons, Wiley-Verlag;
  • D. Griffiths, Introduction to Elementary Particles, Wiley-Verlag;
  • G. Kane, A. Price (Ed.), Perspectives on LHC Physics, World Scientific;
  • R.K. Ellis, W.J. Stirling und B.R. Webber, QCD and Collider Physics, Cambridge Univ. press;
  • D. Green, High PT Physics at Hadron Colliders, Cambridge Univ. press;
  • J.M. Campbell, J.W. Huston und W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics, Rep. Prog. Phys. 70 (2007) 89-193.

 


Astroparticle Physics

Lecturer: Prof. Dr. Marc Schumann
Time: 4 st., Do, Fr 10-12
Room: SR I
9 ECTS
Start:


Program: 

  • The standard model of particle physics
  • Conservation Rules and symmetries
  • The expanding universe
  • Matter, Radiation
  • Dark matter
  • Dark energy
  • Development of structure in the early universe
  • Particle physics in the stars
  • Nature and sources of high energy cosmic particles
  • Gamma ray and neutrino astronomy

 

Prerequisits:

Experimentalphysik V (Kern- und Teilchenphysik)
 

Literature:
tba

 


Quantum Information Theory

Dozent: Prof. Dr. Andreas Buchleitner
Zeit: 4 st., Mo 12-14, Fr 10-12
Ort: HS II
Übungen:
9 ECTS
Beginn: 17.04.2023


Program:

Certain information processing tasks can be performed more efficiently with quantum mechanical than with classical systems. Famous examples are Shor's quantum algorithm for factoring large integer numbers and quantum cryptography enabling secure communication between two parties. In this lecture, we will introduce fundamental concepts of quantum information theory (e.g. entangled states and quantum correlations) and discuss possible applications such as quantum teleportation or quantum computing.

  1. Foundations of quantum information theory
    (Quantum state space, qubits, composite systems, tensor product, correlations and entanglement, quantum entropies)
     
  2. Quantum cryptography
    (Quantum key distribution, BB84 protocol)
     
  3. Quantum computation
    (Quantum gates, quantum circuit model, universal quantum gates, quantum algorithms: Shor, Grover)
     
  4. Physical realizations
    (Trapped ions, cavities, NMR, squids, spintronics)
     
  5. Quantum error correction
    (Quantum noise, quantum operations, quantum error correction, fault-tolerant quantum computation)

 

Prerequisits:

Theoretical Physics I-IV (B.Sc. Physik)
 

Literature:

 


Quantum Hardware

Dozent: Prof. Dr. Tobias Schaetz
Zeit: 4 st., Mo, Mi 14-16
Ort: SR GMH
Übungen: n.V.
9 ECTS
Beginn:
ILIAS


Program:

  • Introduction (qubit concept; entanglement)
  • Quantum platforms: photons, cold atoms, ions, spins, SQUID
  • Quantum sensing
  • Potential applications: quantum computing; quantum simulations; cryptography

 

Prerequisits:

Experimental Physics I-IV (B.Sc. Physik)
 

Literature:

 


Experimental Astrophysics I: Remote Sensing Techniques

Lecturers: Prof. Dr. Svetlana Berdyugina, Dr. Juan Manuel Borrero (KIS), Dr. Ivan Milic (KIS)
Time: 2 + 1 st., Do 12-14
Room: HS II
Start: 20.04.2023
Tutorials: TBD
5 ECTS
Lecture Link
 

Program:

Due to the fact that we cannot directly measure the physical properties of astrophysical bodies, all our quantitative knowledge about the Universe is based on the interpretation of the observed light emitted by these objects (i.e. remote sensing). In this course, we will focus on:

  • The generation and propagation of light in the Solar and stellar atmospheres;
  • Its interaction with Earth’s atmosphere and with our instruments;
  • Methods for inferring the physical characteristics of the object (temperature, chemical composition, magnetic field, etc.) from the light we are receiving.


To this end, we will combine concepts from electromagnetism, optics, quantum mechanics, and probabilistic inference. Besides the astrophysical applications, the course will equip the students with tools they can use in their careers, both in science and in other areas related to STEM. The lectures will be reinforced with hands-on exercises in python with a brief critical introduction to python programming.

The following topics will be addressed in lectures:

  1. Introduction to telescopes and image formation; Atmospheric effects and image restoration.
  2. Spectral discriminators: spectrographs and filtergraphs
  3. Polarimetry: anisotropy as sources of polarization, polarimetric modulation and demodulation.
  4. Basics of spectral line formation: absorption, emission, and scattering. Zeeman effect and polarization due to the magnetic field.
  5. Parameter inference: Model fitting, probabilistic inference, uncertainty estimation


Practical exercises will include problem solving, use of scientific software, participation in remote observing with Europe’s largest solar telescope GREGOR (Tenerife, Spain), analysis of GREGOR data from the KIS Science Data Centre archive.
 

Minimum requirements: 2 years of undergraduate physics with electromagnetism. Course is open to bachelor and master students.
Recommended: introductory quantum/atomic physics, mathematical methods for physicists (Fourier transforms, linear algebra, matrix diagonalization, eigenvalues), and introductory programming.
 

Literature:

  • Introduction to spectropolarimetry. Del Toro Iniesta. Cambridge Univ. Press. 2003
  • The Sun: an introduction. M. Stix, SpringerLink, 2003
  • Inverse problems in Astronomy, I.J.D. Craig & J.C. Brown, CRC Press, 1986
  • Numerical Recipes, the Art of Scientific Programming, 3rd edition, C. Press et al., Cambridge University Press, 2007

 


Group Theory for Physicists

Dozent: Prof. Dr. Stefan Dittmaier
Zeit: 4 st., Mo 14-16, Fr 12-14
Ort: HS II
Übungen: 2 st., Mi 12-14, SR II/III
Beginn: 18.04.2023
9 ECTS
Lecture Link
 

Content:

  • Basic concepts and group theory in QM
    (Symmetry transformations in quantum mechanics, group-theoretical definitions, classes, invariant subgroups, group representations, characters, (ir)reducibility, Schur's lemmas)
  • Finite groups
    (unitarity theorem, orthogonality relations, classic finite groups, applications in physics)
  • SO(3) and SU(2)
    (basic properties, relation between SO(3) and SU(2), irreducible representations, product representations and Clebsch-Gordan decomposition, irreducibletensors,Wigner-Eckart theorem)
  • SU(3)
    (basic properties, irreducible representations, product representations, applications in the quark model of hadrons)
  • Lie groups
    (basic properties, Lie's theorems, Lie algebra, matrix representations and exponentiation)
  • Semisimple Lie groups and algebras
    (basic concepts, Cartan subalgebra, Cartan-Weyl and Chevalley bases, root systems, classification of complex (semi)simple Lie algebras, Dynkin diagrams, finite-dimensional representations, a glimpse on applications in theories of fundamental interactions in particle theory)
  • Lorentz and Poincare groups and algebras
    (basic properties, finite-dimensional and infinite-dimensional representations, method of induced representation, application to particle states)

 

Prerequisits:

Linear Algebra I+II, Quantum Mechanics
 

Literature:

  • R.N. Cahn, "Semi-Simple Lie Algebras and Their Representations", Dover Publications.
  • R. Campoamor-Stursberg, M. Rausch de Traubenberg, "Group Theory in Physics", World Scientific.
  • R.W. Carter, "Finite Groups of Lie Type: Conjugacy Classes and Complex Characters", Wiley Classics Library, Wiley.
  • J. Fuchs, C. Schweigert, "Symmetries, Lie Algebras & Representations: A Graduate Course for Physicists", Cambridge University Press.
  • H. Georgi: "Lie Algebras in Particle Physics", Westview Press.
  • R. Gilmore, "Lie Groups, Lie Algebras, and Some of Their Applications", Dover Books on Mathematics.
  • B.C. Hall, "Lie Groups, Lie Algebras, and Representations", Springer.
  • M. Hamermesh: "Group Theory and Its Application to Physical Problems", Dover Publications.
  • P. Ramond, "Group Theory: A Physicist’s Survey", Cambridge University Press.
  • W.-K. Tung: "Group Theory in Physics", World Scientific.
  • B.G. Wybourne, "Classical groups for physicists", Wiley.
  • A. Zee, "Group Theory in a Nutshell for Physicists", Princeton University Press.

 


Numerical recipes for physicists

Dozent: JProf. Dr. Stefan Vogl
Zeit: 3 st., Mi 10-12
Ort: SR I
Übungen: Do 16-18, CIP II
Beginn: 19.04.2023
5 ECTS
Course-Link

Programme:

Only highly idealized problems can be solved analytically. The solution to all realistic problems rely on numerical methods and their implementation on a computer. This course introduces some of the most important numerical methods and their application in physics.

  • Errors and uncertainties
  • Integration
  • Differentiation
  • Root finding
  • Ordinary differential equations
  • Partial differential equations

 

Preliminaries/Previous knowledge:

None beyond the requirements for the Master’s program in Physics, basic programming skills and interest in problem solving with a computer helpful
 

Literature:

  • R. Landau: "Computational physics", Wiley-VCH, 2007

 


Quantum Transport

Dozent:PD Dr. Michael Walter
Zeit: Fr 14-16
Ort: SR GMH
Beginn:
Übung: 14-tägig, 2-st, online

Programme:

Transport properties are highly relevant for many technological applications like electronics (transport of electrons) or solar cells (separation of positive and negative charge carriers generated by light). In contrast to classical flow or diffusion, quantum properties -- such as the wave nature of a quantum particle, tunneling or the quantization of energy levels -- become relevant on microscopic scales and make quantum transport different from classical transport governed by Newton's equations.

In this lecture, I will present an explicit description of an electronic device at the atomic scale, with the aim to arrive at a single molecule transistor, which is very likely to be the basis of future electronics. The system is completely characterized and the energy levels of contacts and the isolated molecule are known. We develop the formalism to describe the conductance of such a device during the course.

Preliminary Program:

  1. Atomistic view of conductance (energy levels, quantum of conductance)
  2. Basis functions and band structure (basis functions, tight-binding, subbands)
  3. Hopping, Marcus description
  4. Density matrix, Green function, spectral functions
  5. Open systems (level broadening, lifetime)
  6. Coherent transport (transmission, Landau-Büttiker formalism)
  7. Non-coherent transport and Ohm's law

 

Prerequisits:

Theoretical Physics III (Quantum Mechanics)
 

Literature:

  • S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, England, 2005).

 


Theory and Modeling of Materials: Physics of Hydrogen in Metals

Lecturer: apl Prof. Dr. Christian Elsässer
Time: 2 + 1 st., Fr 8-10
Room: SR I
5 ECTS
Start: 21.04.2023
Exercises: approx. bi-weekly 2 hours on appointment

ECTS points: 3 (three) for succesful participation in lectures only; 3+2 (five) for attendance of lectures, participation in exercises, and final oral exam.
 

Program:

Hydrogen is one of the renewable energy carriers for a sustainable future energy economy without fossil fuels. Materials issues concerning safety, reliability and durability need to be considered in the construction of components and the operation of facilities for the production, transport, storage, and exploitation of the energy carrier hydrogen.

This course introduces into models and methods of theoretical metal physics to describe and understand effects of hydrogen on thermodynamic, structural and mechanical properties of metals.

  • Motivation: Hydrogen technologies
  • Metal-Hydrogen systems: Phase Diagrams
  • Atomistic states of Hydrogen interstitials
  • Diffusion of light particles in crystal structures
  • Electronic structures of metal hydrides
  • Mechanical properties: Hydrogen embrittlement

 

Prerequisites:

B.Sc. Courses in Theoretical Physics


Literature:

  • R. Neugebauer (Ed.), Wasserstofftechnologien / Hydrogen Technologies, Springer (2022)
  • Y. Fukai, The Metal-Hydrogen System, Springer (2004)
  • M. Nagumo, Fundamentals of Hydrogen Embrittlement, Springer (2016)
  • V. G. Gavriljuk, V. M. Shyvaniuk, S. M. Teus, Hydrogen in Engineering Metallic Materials: From Atomic-Level Interactions to Mechanical Properties, Springer (2022)
  • G. Alefeld, J. Völkl (Eds.), Hydrogen in Metals I and II, Springer (1978)
  • L. Schlapbach (Ed.), Hydrogen in Intermetallic Compounds I and II (1988 and 1992)
  • H. Wipf (Ed.), Hydrogen in Metals III, Springer (1997)
  • S. Lynch, Hydrogen embrittlement phenomena and mechanisms, Corrosion Review 30 (2012) 105-123.
  • O. Barrera et al., Understanding and mitigating hydrogen embrittlement of steels, Journal of Materials Science 53 (2018) 6251-6290
  • X. Li et al., Review of Hydrogen Embrittlement in Metals, Acta Metallurgica Sinica (English Letters) 33 (2020) 759-773.

 


Physics of Nano-Biosystems

Dozent: Prof. Dr. Thorsten Hugel (Inst. of Physical Chemistry), Dr. Thomas Pfohl
Zeit: 2 + 1 st., Do 8-10
Ort: SR I
Übungen: Do 14-15, SR I
5 ECTS
Beginn:
ILIAS


Program: 

  • Fundamental forces in Nano-Biosystems (elastic, viscous, thermal, chemical, entropic, polymerization)
  • Concepts of equilibrium and non-equilibrium systems and measurements
  • Jarzynski equation
  • Linear and rotational molecular motors
  • Molecular details of muscle function
  • Optical and magnetic tweezers, AFM
  • Single molecule force spectroscopy
  • Single molecule fluorescence
  • Concepts of nanotribology and biolubrication

 

Prerequisits:

Basic knowledge of statistics and optics is helpful but not mandatory.

Literature:

  • Jonathon Howard: “Mechanics of Motor Proteins and the Cytoskeleton“ (2005)
  • Phil Nelson: "Biological Physics: Energy, Information, Life" (2003)
  • Rob Philips, Jane Kondev, Julie Theriot, Hernan Garcia: "Physical Biology of the Cell" (2012)
  • Recent journal publications

 


Laser-based Spectroscopy and Analytical Methods

Dozent: PD Dr. Frank Kühnemann (Fraunhofer IPM)
Zeit: 2 + 1 st., Di 14-17
Ort: SR GMH
5 ECTS
Beginn:


Program: 

Lasers did become a powerful tool for measurement applications in areas like industry, medicine, or environment. The current course focuses on the use of tuneable lasers to interrogate the spectral “fingerprints” of gases, liquids and solids for analytical purposes. Typical examples are air quality monitoring or process control in industry.

The lecture block in the first half of the course will give a comprehensive introduction into the following topics

  • Infrared molecular spectra
  • Tuneable lasers
  • Spectroscopic techniques (absorption, photoacoustic spectroscopy, cavity-based methods)
  • Background signals, noise and detection limits
     

The seminar talks in the second block will focus on the application of differ-ent spectroscopic methods for analytical tasks. At the start of the course, students will choose from a list of provided topics to prepare a talk and a short written summary. The preparation will be supported by topical literature and discussion sessions with the course staff. Duration of the talks will be appr. 30 minutes, followed by a discussion of content and presentation style.

Prerequisits:

Advanced Optics and Lasers (recommended)

Literature:

 


Nano-Photonics – Optical manipulation and particle dynamics

Dozent: Prof. Dr. Alexander Rohrbach
Zeit: 3 st., Di 9-12
Ort: SR II/III
7 ECTS
Beginn:
ILIAS

Motivation:

You think basic research and applied research cannot be well combined? You think that directing a laser pointer beam into a droplet of coffee results in infinitely complex physics, but explaining the physics therein is not good for anything? You want to learn complex physics of technologies that is of social benefit? If yes, this lecture can be interesting to you!

In this lecture you will learn

- the direct relation from the Maxwell equations and the electromagnetic force density to optical forces and optical tweezers, which allowed to control molecular processes mainly in cellular biology and medicine

- how photons transfer momentum to microscopic objects and how scattered photons transfer information about the state of the objects. In particular coherent light can encode extremely much information about the state of small objects, which, driven by thermal forces, continuously change their position and orientation relative to their environment. All this can be directly measured through µs-nm particle tracking.

- how smallest probes can interact on a molecular scale with their environment, which can be analyzed by correlations of changes in the probe’s states. In this way, the interaction of probes with living cells gives new insights into cellular diseases. This includes not only bacterial and viral infections, but also exposure of particulate matter to lung cells.
 

Contents

  • Introduction
  • Light – Carrier of Information and Actor
  • Microscopy und Light Focussing
  • Light Scattering
  • Manipulation by Optical Forces
  • Particle Tracking beyond the Uncertainty Regime
  • Thermal Motion and Calibration
  • Photonic Force Microscopy
  • Applications in Biophysics and Medicine
  • Time-Multiplexing and holographic optical traps
  • Applications in Micro- and Nano-Technology
  • Appendix

 


Environmental Physics

Dozent: Prof. Dr. Frank Stienkemeier
Zeit: 3 st., Mo, Do 10-12
Ort: HS II
7 ECTS
Beginn: 17.04.2023
Tutorials: 2 st., Di 14-16, SR I
ILIAS

Summary:

The lecture Environmental Physics will discuss the physics related to environmental aspects on the following topics:

  • Atmosphere and radiation
  • Water and flow
  • Climate
  • Energy for human use (generation, transport, storage)
  • Environmental spectroscopy

 


Current Topics in Computational Neuroscience

Dozent: Prof. Dr. Stefan Rotter, Prof. Dr. Carsten Mehring
Zeit: 5 st
Ort: Bernstein Center Freiburg, Lecture Hall (Hansastrasse 9a, 79104 Freiburg)
Beginn:
Registration for this course by email to birgit.ahrens@biologie.uni-freiburg.de


Program:

Mathematical concepts and methods:

  • Basic probability and statistics
  • Linear and nonlinear dynamical systems
  • Phase plane methods
  • Continuous stochastic processes and point processes
  • Graphs and networks, random graphs

 

Models of biological neurons and networks:

  • Hodgkin-Huxley theory of the action potential
  • Stochastic theory of ionic channels
  • Synaptic integration and spike generation
  • Dynamics of spiking networks and population dynamics
  • Primary visual cortex and processing of visual information
  • Models of plasticity, growth and maturation

 

Models of biological learning and control:

  • Reinforcement learning
  • Adaptive Control
  • Bayesian learning
  • Structure learning

 

Literature:

A bibliography and web-links to complementary reading for each course day will be provided along with the slides of the lecture.

 


Simulation of Biological Neuronal Networks

Dozent: Prof. Dr. Stefan Rotter
Zeit: 2 st, Block, 1 week (date will be announced)
Ort: Bernstein Center Freiburg, Lecture Hall (Hansastrasse 9a, 79104 Freiburg)
Beginn:
Course-Link
Registration for this course by email to birgit.ahrens@biologie.uni-freiburg.de

 


Program:

This course covers the fundamentals of simulating networks of single-compartment spiking neuron models. We start from the concepts of a point neuron and then introduce more complex topics such as phenomenological models of synaptic plasticity, connectivity patterns and network dynamics.

 

Literature:

See http://www.nest-initiative.org/ for some general information and an online tutorial on the BNN simulator NEST.

 


Term Paper: Topics in Particle Physics

Lecturer: Prof. Dr. Gregor Herten, PD Dr. Karsten Köneke
Time:
Room:
6 ECTS
Start:

Program:

 


Term Paper: Classical and Quantum Chaos

Lecturer: Prof. Dr. Andreas Buchleitner
Time: Fr 14-16
Room: HS II
6 ECTS
Start:

Program:

 


Term Paper: Milestones in Attosecond Science

Lecturer: Prof. Dr. Giuseppe Sansone
Time:
Room:
6 ECTS
Start:

Program:

 


 

Personal tools