Uni-Logo

Kommentare Sommersemester 2022

Veranstaltungsbeschreibungen in Deutsch und für englisch-sprachige Master-Veranstatungen in Englisch. Course descriptions in German and for Master courses in English.

Mathematik I für Studierendeder Physik

Dozent: NN
Zeit: 4 st., Mo 12-14, Di 14-16
Ort: HS I
9 ECTS
Beginn:
ILIAS


Programm:

  • Topologien im Rn
  • Ableitung (mehrkomponentiger) Funktionen, auch in mehreren Variablen, Ableitungsregeln
  • Taylor-Entwicklung
  • Gewöhnliche Differentialgleichungen
  • Koordinatensysteme, speziell Polar-, Zylinder- und Kugelkoordinaten
  • Integration (mehrkomponentig), Wegintegration, Flächen- und Volumenintegration, Gauß‘scher und Stokes’scher Satz
  • Symmetrische Bilinearformen: Orthogonalbasen, Sylvester'scher Trägheitssatz
  • Euklidische und Hermitesche Vektorräume: Skalarprodukte, Kreuzprodukt, Gram'sche Determinante
  • Gram-Schmidt-Verfahren, orthogonale Transformationen, (selbst-) adjungierte Abbildungen, Spektralsatz, Hauptachsentransformation
  • Affine Räume
  • Fourier Analyse
  • Distributionen

 

Vorkenntnisse:

Inhalte der Grundvorlesungen Analysis I und Lineare Algebra I
 

Einführende Literatur:

 


Experimentalphysik II (Elektromagnetismus und Optik)

Dozent: NN
Zeit: 4 st., Mo, Mi 10-12,
Ort: Großer HS
6 ECTS
Beginn:
ILIAS

 

Programm:

Die Vorlesung Experimentalphysik II vermittelt die experimentellen Grundlagen der Elektrizität, des Magnetismus und der Optik. Im Zentrum der Vorlesung stehen Demonstrationsexperimente. Die Vorlesung wird durch Übungen begleitet.

Folgende Themen werden behandelt:

  • Elektrische Ladung
  • Elektrische Felder
  • Gaußscher Satz und elektrisches Potential
  • Kapazität
  • Elektrischer Strom, Widerstand und Stromkreise
  • Magnetfelder
  • Strominduzierte Magnetfelder, Induktion und Induktivität
  • Wechselstrom und Schwingkreise
  • Maxwellgleichungen und elektromagnetische Wellen
  • Geometrische Optik
  • Reflexion und Brechung von Licht
  • Licht als Welle: Interferenz und Beugung

 

Vorkenntnisse:

Experimentalphysik I
 

Einführende Literatur:

  • W. Demtröder, Experimentalphysik 2, Elektrizität und Optik, Springer-Verlag
  • Tipler / Mosca, Physik, Springer Verlag
  • J. Heintze, Lehrbuch der Experimentalphysik, Band 3: Elektrizität und Magnetismus, Springer Verlag
  • Bergmann / Schäfer, Lehrbuch der Experimentalphysik, Band 2, Elektromagnetismus, Verlag de Gruyter

 


Experimentalphysik IV (Atom-, Molekül- und Festkörperphysik)

Dozent: NN
Zeit: 4 st., Di 12-14, Do 8-10
Ort: Großer HS
7 ECTS
Beginn:
ILIAS


Programm:

  • Komplexe atomare Systeme und periodisches System
  • Struktur und Eigenschaften von Molekülen
  • Struktur und Eigenschaften von Festkörpern und Oberflächen

 

Vorkenntnisse:

Experimentalphysik I-III


Einführende Literatur:

 


Theoretische Physik I (Mechanik und Spezielle Relativitätstheorie)

Dozent: NN
Zeit: 4 st., Di, Do 10-12
Ort: HS I
7 ECTS
Beginn:
ILIAS
 

Programm: 

  • Mechanik des Punktteilchens
  • Systeme von Massenpunkten
  • Bewegung in Zentralkraftfeldern
  • Inertialsysteme und beschleunigte Bezugssysteme
  • Symmetrien, Invarianzen und Erhaltungsgrößen
  • Methode der Lagrange-Multiplikatoren
  • Hamiltonsches Prinzip
  • Lineare Schwingungen
  • Hamilton-Mechanik
  • Dynamik starrer Körper
  • Spezielle Relativitätstheorie

 

Vorkenntnisse:

Theoretische Physik I
 

Einführende Literatur:

  • V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer
  • H. Goldstein, C.P. Poole, J.L. Safko, Klassische Mechanik, Wiley-VCH
  • J. Honerkamp, H. Römer, Grundlagen der Klassischen Theoretischen Physik, Springer
  • F. Kuypers, Klassische Mechanik, Wiley-VCH
  • L.D. Landau, E.M. Lifshitz, Lehrbuch der Theoretischen Physik, Band I, Akademie-Verlag
  • W. Nolting, Grundkurs Theoretische Physik, Band 1, 2 und 4, Springer
  • H. Römer, M. Forger, Elementare Feldtheorie, VCH

 


Theoretische Physik III (Quantenmechanik)

Dozent: NN
Zeit: 4 st., Mo 10-12, Do 12-14
Ort: HS I
8 ECTS
Beginn:
ILIAS


Programm: 

  • Schrödingergleichung
  • Eindimensionale Probleme
  • Wasserstoffatom
  • Spin
  • Drehimplus
  • Störungstheorie
  • ...
  • EPR -Paradoxon und Bell'sche Ungleichungen

 

Vorkenntnisse:

Theoretische Physik I-II, Analysis und Lineare Algebra
 

Einführende Literatur:

  • F. Schwabl. Quantenmechanik
  • T. Fließbach. Quantenmechanik

 


Experimentelle Methoden

Dozent: NN
Zeit: 2 st., Di 8-10
Ort: HS I
5 ECTS
Beginn:


Programm:

  • Statistische Methoden der Datenanalyse
  • Datenanalyse mit ROOT
  • Grundlagen der Elektronik
  • Digitale und analoge Messtechnik
  • Grundlagen von Detektoren

 

Hinweis:
Die erfolgreiche Teilnahme an dieser Veranstaltung ist Voraussetzung zur Teilnahme am Physiklabor für Fortgeschrittene.

 


Seminar Physik: tba

Dozenten: NN
Zeit: 2 st,
4 ECTS

Themen:

 


Seminar Physik: tba

Dozenten: NN
Zeit: 2 st,
4 ECTS

Themen:

 


Einführung in die Moderne Digitalelektronik

Dozent: apl. Prof. Dr. Horst Fischer
Zeit: 2 st., Mo-Fr 10-12
Ort: SR I
Übungen: Mo-Fr 14-16, CIP Pool II
5 ECTS
Blockkurs:

Programm:

Ziel:
Die Teilnehmenden erhalten einen Überblick über die wesentlichen Anwendungsgebiete und Methoden in der heutigen Digitalelektronik. Sie lernen an Hand von Beispielen die Konzepte und Funktionsweise digitaler Schaltkreise kennen und werden in die Programmierung von logischen Bausteinen eingeführt. In der praktischen Übung werden Logikbausteine (FPGA) selbst programmiert.

Folgende Themen werden behandelt:

  • Anwendungsfelder der Digitalelektronik
  • Grundlagen und logische Verknüpfungen
  • Schaltkreisfamilien
  • Rechenschaltungen
  • programmierbare Bausteine (FPGA und CPLD)
  • Zahlen und Speicher
  • Automaten
  • Systeme zur Datenaufzeichnung

 

Vorkenntnisse:

 

Einführende Literatur:

  • Urbansk, Digitaltechnik (Springer)
  • Tietze Schenk, Halbleitertechnik (Springer)

 

 


Halbleiterbauelemente / Semiconductor Devices

Dozent: PD Dr. Harald Schneider, Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Zeit: 2 st., Online-Vorlesung, empfohlene Bearbeitungszeit
Ort: onine
5 ECTS
Beginn:
ILIAS

Programm:

  • Transportphänomene
  • Metall-Halbleiter-Kontakt, Schottky-Diode
  • p-n Übergang: Diodengleichrichter, Photodiode, LED, Laserdiode, Solarzelle
  • Bipolare Transistoren, HBT
  • Feldeffekt-Transistoren: JFET, MESFET, HEMT, MOSFET, FGFET
  • Quantenstruktur-Bauelemente: RTD, QWIP, QCL, ICL

 

Vorkenntnisse:

Experimentalphysik IV (Kondensierte Materie), Vorlesung Grundlagen der Halbleiterphysik (apl. Prof. J. Wagner)
 

Einführende Literatur:

  • S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, Wiley, 2006
  • S.M. Sze, Semiconductor Devices, Wiley, 2001

 
 

Einführung in die Astrophysik

Dozent: NN
Zeit: 3 st., Mi 9-12
Ort: HS I
Übungen: 2 st. n.V.
7 ECTS
Beginn:
ILIAS


Programm:

Diese Vorlesung vermittelt einen Überblick über Ziele und Ergebnisse der modernen Astrophysik und über das moderne Weltbild. Themen sind die Grundlagen der physikalischen Eigenschaften der Sonne und des Planetensystems, des Aufbaus und der Entwicklung von Sternen, sowie die Grundlagen der Physik von Sternsystemen und des modernen kosmologischen Weltbildes. Die Vorlesung ist gedacht für den Studiengang Physik Bachelor im 4. Semester sowie für das Lehramt Physik.
Themen:

  • Einleitung
  • Koordinatensysteme
  • Das Sonnensystem
  • Teleskope und Instrumente
  • Photometrie
  • Aufbau und Entwicklung von Sternen
  • Die Sonne
  • Veränderliche Sterne
  • Die Milchstraße
  • Das Interstellare Medium
  • Extragalaktische Physik
  • Strukturen im Universum und Kosmologie

 

Vorkenntnisse:

Experimentalphysik I-III, Theoretische Physik I-III
 

Einführende Literatur:

  • Weigert, A., Wendker, H., Wisotzki, L.: Astronomie und Astrophysik - Ein Grundkurs VCH Verlagsgesellschaft, 4. Aufl. (2004), ISBN 3-527-40358-2
  • Karttunen, H., Kröger, P., Oja, H., Poutanen, M. Donner, K. J.: Fundamental Astronomy, Springer-Verlag, ISBN 3-540-17264-5
  • Hanslmeier, A., Einführung in die Astronomie und Astrophysik (2. Auflage 2007), Springer ISBN 978-3-8274-1846-3
  • Scheffler, H., Elsässer, H.: Physik der Sterne und der Sonne Bibliographisches Institut, ISBN 3-411-01438-5
  • Unsöld, A:, Bascheck, B.: Der neue Kosmos (6. Auflage), Springer-Verlag, ISBN 3-540-64165-3 

 


Photovoltaic Energy Conversion / Photovoltaische Energiekonversion

Dozent: Dr. Uli Würfel, Prof. Dr. Andreas Bett
Zeit: 2 st., Di 8-10
Ort: SR GMH
Übungen: nach Vereinbarung (1 st.)
5 ECTS
Beginn:

Program:

  • Basic structure of solar cells
  • Thermodynamic limit for the conversion of sunlight into electrical energy
  • Semiconductors: density of states, Fermi energy, doping
  • Generation and recombination, quasi Fermi energies
  • Transport of charge carriers
  • The pn-junction
  • Charge carrier selectivity
  • Ideal solar cells
  • Real solar cells: crystalline Si solar cells
  • Thin film solar cells
  • Tandem and multijunction solar cells,
  • Dye, organic and perovskite solar cells

 

Prerequisits:

Knowledge of semiconductor or solid state physics advantageous /Halbleiter- bzw. Festkörperphysik von Vorteil

Literature:

  • P. Würfel, U. Würfel, Physics of Solar Cells, Wiley-VCH, 3rd Edition 2016
  • M.A. Green, Solar Cells, University of New South Wales 1982

 


Kompakte Fortgeschrittene Theoretische Physik

Dozent: NN
Zeit: 4 st., Mo, Di 10-12
Ort: SR I
7 ECTS
Beginn:
ILIAS
 

Programm:

Diese Vorlesung speziell für Lehramtsstudierende findet zum vierten Mal statt und ist für Studierende nach der neuen Prüfungsordnung (GymPO) eine Pflichtvorlesung. Empfohlen wird die Teilnahme im 4. Fachsemester. Studierende nach der alten Prüfungsordnung (WPO) können wahlweise die Theo IV oder diese Vorlesung hören. Der Schwerpunkt dieser Vorlesung ist die Quantenmechanik, allerdings bezieht sich ein Teil des Inhalts auch auf die Statistische Mechanik. Nach dem aktuellen Modulhandbuch erhalten Sie nach erfolgreicher Teilnahme an dieser Vorlesung und den begleitenden Übungen einen Leistungsnachweis. Die Kriterien werden in der Vorlesung bzw. den Übungen bekannt gegeben. Für Studierende nach der alten Prüfungsordnung kann auch ein benoteter Schein ausgestellt werden. 
 

Vorkenntnisse:

Theoretische Physik I-III
 

Einführende Literatur:

 


Einführung in die Physikdidaktik für Studierende des Gymnasiallehramts

Dozent: JunProf. Dr. Martin Schwichow
(Veranstaltung der Pädagogischen Hochschule)
Zeit: 4 st., Di 14-16
Ort: Pädagogische Hochschule KG 3-111
Vorlesungs link

Programm:

  • Physikunterricht legitimieren / Ziele
  • Ziele / Lehrplan / Bildungsstandards
  • Kontextorientierung und Lebensweltbezug
  • Moderne Themen / didaktische Rekonstruktion
  • Schülervorstellungen
  • Im Physikunterricht experimentieren
  • Modellmethode
  • Computereinsatz im Physikunterricht
  • Offener schülerorientierter problemorientierter Unterricht (Teil 1)
  • Offener schülerorientierter problemorientierter Unterricht (Teil 2)
  • Aufgabenkultur
  • Physikunterricht evaluieren
  • Interesse
  • KLAUSUR

 

Einführende Literatur:

  • Helmut F. Mikelskis (Hrsg.), Physik-Didaktik: Praxishandbuch für die Sekundarstufe I und II, Cornelsen Verlag Scriptor, 2006, 290 S.
  • Silke Mikelskis-Seifert/Thorid Rabe (Hrsg.), Physik-Methodik: Handbuch für die Sekundarstufe I und II, Cornelsen Verlag Scriptor, 2007, 242 S.

 


Theoretical Condensed Matter Physics

Lecturer: NN
Time: 4 + 2 st., Mo, Mi 10-12
Room: HS II
Tutorials: Fr 10-12, SR GMH, SR Westbau 2.OG
9 ECTS
Start:
ILIAS

Program:

  • Structure of solids
  • Lattice vibrations: Phonons
  • Electronic structure of solids
  • Electron-electron interaction, electron-phonon interaction
  • Superconductivity
  • Magnetism
  • Transport theory

 

Prerequisits:

Theoretical Physics I-IV
 

Literature:

  • M.W. Ashcroft and N.D. Mermin, Solid State Physics
  • U. Rössler, Solid State Theory: An Introduction
  • L. Kantorovich, Quantum Theory of the Solid State: An Introduction
  • C. Kittel, Quantum Theory of Solids

 


Complex Quantum Systems

Lecturer: NN
Time: 4 + 2 st., Mi, Do 12-14
Room: SR GMH
9 ECTS
Start:
ILIAS

Program:

  • Quantum states
  • Pure and mixed states, density matrices, quantum entropies
  • Composite quantum systems
  • Tensor product, entangled states, partial trace and reduced density matrix
  • Open quantum systems
  • Closed and open systems, dynamical maps, quantum operations, complete positivity and Kraus representation
  • Dynamical semigroups and quantum master equations
  • Semigroups and generators, quantum Markovian master equations, Lindblad theorem
  • General properties of the master equation
  • Pauli master equation, relaxation to equilibrium, correlation functions, quantum regression theorem
  • Decoherence
  • Destruction of quantum coherence through interaction with an environment, decoherence versus relaxation
  • Microscopic theory
  • System-reservoir models, Born-Markov approximation, microscopic derivation of the master equation
  • Applications
  • Quantum theory of the laser, superradiance, quantum transport, quantum Boltzmann equation
  • Non-Markovian quantum dynamics
  • Quantum memory effects, system-environment correlations, information flow, non-Markovian master equations

Prerequisites: Advanced Quantum Mechanics

Literature:

  • H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)
  • M. Hayashi, Quantum Information (Springer, Berlin, 2006)
  • M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
  • C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991)
  • R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987)

  

 


Introduction to Relativistic Quantum Field Theory

Dozent: NN
Zeit: 4 st., Mo 14-16, Di 12-14
Ort: HS II
Übungen: Mi 14-16, HS II
9 ECTS
Beginn:
ILIAS


Program:

  • Quantization of scalar fields (Klein Gordon equation, classical field theory, canonical quantization, scattering theory and Feynman diagrams)
  • Vector-boson fields (classical field equations, electromagnetic interactions and the gauge principle, quantization of the electromagnetic field, scalar QED and perturbative evaluation)
  • Dirac fermions (basics of Lie Groups, Lorentz group and its representations, Dirac and Weyl equations, Poincare group and its representations, quantization of free Dirac fields, QED and perturbative evaluation, applications)
  • Quantization with functional integrals

 

Prerequisits:

Quantum Mechanics, Electrodynamics and Special Relativity
 

Literature:

  • Bjorken/Drell: "Relativistic Quantum Mechanics"
  • Bjorken/Drell: "Relativistic Quantum Fields"
  • Itzykson/Zuber: "Quantum Field Theory"
  • Maggiore: "A Modern Introduction to Quantum Field Theory"
  • Peskin/Schroeder: "An Introduction to Quantum Field Theory"
  • Tung: "Group Theory in Physics"
  • Weinberg: "The Quantum Theory of Fields, Vol.1: Foundations"
  • Tung: "Group Theory in Physics"
  • Ramond: "Field Theory: a Modern Primer"
  • Tung: "Group Theory in Physics"
  • Schwartz: "Quantum Field Theory and the Standard Model"

 


Computational Physics: Materials Science

Lecturer: NN
Time: 4 h, Di, Do 10-12
Room: SR Westbau 2.OG
Tutorials: 2 h, Di 14-16
9 ECTS
Start:
ILIAS

Program:

Application of computational simulation methods can help to discover or design new materials and investigate (microscopic) structure- (macroscopic) property relationships of a wide range of materials classes, such as metals, composites, nanostructures, ice/water, as well as polymers, surfactants, or colloidal dispersions. This course will introduce basic statistical concepts as well as programming and simulations techniques with particular focus on methods based on classical Hamiltonians spanning orders of length and time scales, such as Molecular Dynamics and coarse-grained Langevin Dynamics simulations. The students will become familiar with some examples for the different types of interatomic and coarse-grained potentials: e.g., Lennard-Jones, Born-Mayer, Embedded-Atom, (screened) Coulomb, Hamaker, etc. as well as bonded potentials for molecules and polymers. The course will consist of lectures and hands-on programming exercises and small projects, simulating mostly complex (interacting) fluids and molecules, using own written code.

Criteria for passing: For successfully completing the Studienleistung (SL), students must (i) obtain, at least, an average of 50% over all the tutorial sheets , (ii) not miss more than two tutorials (either digital or in presence), and (iii) present their results at least twice during the semester. The Prüfungsleistung consists of a written exam, and only the result of the written exam contributes to the Prüfungsleistung.


Prerequisits:

Basic knowledge in programming (Python, C/C++) as well as statistical mechanics.


Literature:

  • Script (will be available via ILIAS)
  • Book: Understanding molecular simulation from algorithms to applications. D. Frenkel and B. Smit. AP Academic Press.
  • Book: Computer simulation of liquids. M. P. Allen and D. J. Tildesley. Oxford University Press. 3rd edition (2017)
  • Book: Richard Lesar, Computational Material Science, Cambridge University Press

 


Advanced Optics and Lasers

Lecturer: NN
Time: 4 + 2 st., Mi, Do 10-12
Room: SR GMH
9 ECTS
Start:
ILIAS


Program:

In this course, we will discuss the principles of lasers and their application. We will start with the fundamentals of light-matter interaction and the basic principles of lasers. We will continue with a discussion of various laser types, ranging from narrow-bandwidth continuous wave lasers used for high-resolution spectroscopy, to ultrashort-pulsed lasers used to study nonlinear physics and light-induced dynamics on the nano- to femtosecond timescale. We will then discuss nonlinear optical phenomena such as nonlinear wavelength mixing, parametric conversion and their application in modern laser systems. Eventually, we will have an outlook on very recent laser developments. Examples are high harmonic generation, Free Electron Lasers or frequency combs.

The lecture will focus on experimental and some basic theoretical principles. The tutorials include problem sheets as well as practical exercises on different laser systems in our lab.
 

Summary of topics:

  • Light-matter interaction
  • Coherence and interference
  • The laser principle
  • Optical resonators
  • Gaussian beam optics
  • Ultra-short laser pulses
  • Nonlinear optics and parametric amplification
  • Recent laser developments

 

Prerequisits:

Experimental Physics I-IV
 

Literature:

  • W. Lange “Laserphysik”
  • Demtröder “Laserspektroskopie”
  • J. Eichler & H.J. Eichler, Springer, „Laser“
  • F.K. Kneubühl /M.W. Sigrist “Laser”
  • D. Meschede “Optik, Licht und Laser”
  • C. Ruilliere, Springer, "Femtosecond laser pulses“

 


Condensed Matter II: Interfaces and Nanostructures

Dozent: Prof. Dr. Günter Reiter
Zeit: 4 st., Do, Fr 8-10
Ort: HS II
9 ECTS
Beginn:
ILIAS


Program:

The students should get an overview over phenomena which only appear on surfaces and interfaces (e.g. how to make water running uphill?). The course deals with special structural and electronic properties of liquid and solid surfaces as well as their relevance in many fields of modern material science and nanotechnology.
Surfaces between solids and liquids can be found in most of the physical, chemical, biological and geological systems, as well as in many technological processes. Although the number of atoms or molecules at these surfaces is comparatively small, this "minority" can often dominate or even control the behavior of large (macroscopic) systems.

Topics:

  • General description of interfaces: Thermodynamics and kinetics
  • Interaction forces at interfaces: Short- and long range forces, ...
  • Liquids and liquid interfaces: Droplets, bubbles, waves, "liquid beads"
  • Solid-liquid interfaces: Hydrodynamics, capillarity, wetting, ...
  • Structure of solid surfaces: Electronic processes at surfaces
  • Surface processes: Adsorption/desorption, phase transitions
  • Making of well defined solid surfaces: Surface reconstruction, surface transport, ...
  • Growth- and decay: Epitaxy, nucleation, lattice mismatches, mechanical stress
  • Organic layers and nanostructures on surfaces: Directed stucturing of surfaces at nm-scale


Prerequisits:

Experimentalphysik IV (Condensed Matter)
 

Literature:

  • Intermolecular and Surface Forces, With Applications to Colloidal and Biological Systems, Jacob Israelachvili, Academic Press 1995 bzw. Elsevier 2008
  • "Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves" von P.-G. de Gennes, F. Brochard-Wyart und D. Quéré, Springer, New York, 2004
  • John A. Venables, Lecture notes on Surfaces and Thin Films
  • I. Markov, Crystal Growth for Beginners, World Scientific

 


Hadron Collider Physics

Lecturer: NN
Time: 4 st., Mo, Di 10-12
Room: SR GMH
9 ECTS
Start:
ILIAS


Program:

In this lecture Physics at Hadron Colliders is discussed. The focus lies on the discussion of recent physics measurements performed at the Large Hadron Collider (LHC) at CERN. They include experimental tests of the Standard Model, Higgs boson physics and searches for extensions of the Standard Model.

The Program consists of:
- Lectures (4h per week)
- Exercises / tutorials (2 h per week), including computer simulations and analysis of ATLAS physics events

Topics:

  • Accelerators
  • LHC detectors
  • Phenomenology of pp collisions
  • Structure functions, cross sections
  • Particle signatures in LHC experiments
  • Inelastic pp collisions
  • Production of jets, test of perturbative QCD
  • Physics of W and Z bosons
  • The top quark and its properties
  • Search for the Higgs boson, measurements of the properties of the new particle at 126 GeV
  • Search for supersymmetric particles
  • Search for other extensions of the Standard Model


Prerequisits:

Experimental Physics V (Nuclear and Particle Physics)
Particle Physics II (desirable)
 

Literature:

  • F. Halzen, A.D. Martin, Quarks and Leptons, Wiley-Verlag;
  • D. Griffiths, Introduction to Elementary Particles, Wiley-Verlag;
  • G. Kane, A. Price (Ed.), Perspectives on LHC Physics, World Scientific;
  • R.K. Ellis, W.J. Stirling und B.R. Webber, QCD and Collider Physics, Cambridge Univ. press;
  • D. Green, High PT Physics at Hadron Colliders, Cambridge Univ. press;
  • J.M. Campbell, J.W. Huston und W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics, Rep. Prog. Phys. 70 (2007) 89-193.

 


Astroparticle Physics

Lecturer: Prof. Dr. Marc Schumann
Time: 4 st., Do, Fr 10-12
Room: SR I
9 ECTS
Start:


Program: 

  • The standard model of particle physics
  • Conservation Rules and symmetries
  • The expanding universe
  • Matter, Radiation
  • Dark matter
  • Dark energy
  • Development of structure in the early universe
  • Particle physics in the stars
  • Nature and sources of high energy cosmic particles
  • Gamma ray and neutrino astronomy

 

Prerequisits:

Experimentalphysik V (Kern- und Teilchenphysik)
 

Literature:
tba

 


Quantum Information Theory

Dozent:Prof. Dr. Andreas Buchleitner
Zeit: 4 st.,
Ort:
Übungen: n.V.
9 ECTS
Beginn:


Program:

Certain information processing tasks can be performed more efficiently with quantum mechanical than with classical systems. Famous examples are Shor's quantum algorithm for factoring large integer numbers and quantum cryptography enabling secure communication between two parties. In this lecture, we will introduce fundamental concepts of quantum information theory (e.g. entangled states and quantum correlations) and discuss possible applications such as quantum teleportation or quantum computing.

  1. Foundations of quantum information theory
    (Quantum state space, qubits, composite systems, tensor product, correlations and entanglement, quantum entropies)
     
  2. Quantum cryptography
    (Quantum key distribution, BB84 protocol)
     
  3. Quantum computation
    (Quantum gates, quantum circuit model, universal quantum gates, quantum algorithms: Shor, Grover)
     
  4. Physical realizations
    (Trapped ions, cavities, NMR, squids, spintronics)
     
  5. Quantum error correction
    (Quantum noise, quantum operations, quantum error correction, fault-tolerant quantum computation)

 

Prerequisits:

Theoretical Physics I-IV (B.Sc. Physik)
 

Literature:

 


Quantum Hardware

Dozent:Prof. Dr. Tobias Schaetz
Zeit: 4 st.,
Ort:
Übungen: n.V.
9 ECTS
Beginn:


Program:

  • Introduction (qubit concept; entanglement)
  • Quantum platforms: photons, cold atoms, ions, spins, SQUID
  • Quantum sensing
  • Potential applications: quantum computing; quantum simulations; cryptography

 

Prerequisits:

Experimental Physics I-IV (B.Sc. Physik)
 

Literature:

 


Theory and Modeling of Materials: Electronic structure theory of condensed matter II

Lecturer: apl Prof. Dr. Christian Elsässer
Time: 2 + 1 st., Fr 8-10
Room: SR I
5 ECTS
Start:
Exercises: approx. bi-weekly 2 hours on appointment (1 SWS)

ECTS points: 3 (three) for attendance of lectures only; 3+2 (five) for attendance of lectures, participation in exercises, and final oral exam.
 

Program:

The two-semester course introduces theoretical models and computational methods of solid-state physics for the description of many-electron systems, by means of which cohesion and structure, physical and chemical properties of materials can be understood qualitatively and calculated quantitatively on a microscopic basis.

In the winter semester 2021/2022, the following theoretical concepts will be addressed: Free electron gas; electrons in a crystal; nearly free electrons ("energy bands") or tightly bound electrons ("chemical bonds"); electron-electron interactions and effective one-electron theories; first-principles density functional theory and semi-empirical approaches for electronic-structure calculations.

In the summer semester 2022, the concepts will be applied to study, e.g., the following topics: Cohesion of solids, bonding types and lattice structures of crystals; electron band structures and energy spectra; electronic transport; electrons and phonons; electronic properties of defects and dopants, surfaces and interfaces; ferroelectric and ferromagnetic materials.
 

Prerequisites:

B.Sc. Courses on Theoretical Physics I-IV


Literature:

  • A. P. Sutton, Electronic Structure of Materials, Oxford (1993)
  • D. G. Pettifor, Bonding and Structure of Molecules and Solids, Oxford (1995)
  • M. W. Finnis, Interatomic Forces in Condensed Matter, Oxford (2003)
  • R. M. Martin, Electronic Structure - Basic Theory and Practical Methods, Cambridge (2004)

 


Physics of Nano-Biosystems

Dozent: Prof. Dr. Thorsten Hugel (Inst. of Physical Chemistry), Dr. Thomas Pfohl
Zeit: 2 + 1 st., Do 8-10
Ort: SR I
Übungen: Do 13-14, SR I
5 ECTS
Beginn:
ILIAS


Program: 

  • Fundamental forces in Nano-Biosystems (elastic, viscous, thermal, chemical, entropic, polymerization)
  • Concepts of equilibrium and non-equilibrium systems and measurements
  • Jarzynski equation
  • Linear and rotational molecular motors
  • Molecular details of muscle function
  • Optical and magnetic tweezers, AFM
  • Single molecule force spectroscopy
  • Single molecule fluorescence
  • Concepts of nanotribology and biolubrication

 

Prerequisits:

Basic knowledge of statistics and optics is helpful but not mandatory.

Literature:

  • Jonathon Howard: “Mechanics of Motor Proteins and the Cytoskeleton“ (2005)
  • Phil Nelson: "Biological Physics: Energy, Information, Life" (2003)
  • Rob Philips, Jane Kondev, Julie Theriot, Hernan Garcia: "Physical Biology of the Cell" (2012)
  • Recent journal publications

 


Laser-based Spectroscopy and Analytical Methods

Dozent: PD Dr. Frank Kühnemann (Fraunhofer IPM)
Zeit: 2 + 1 st., Di 14-17
Ort: SR GMH
5 ECTS
Beginn:


Program: 

Lasers did become a powerful tool for measurement applications in areas like industry, medicine, or environment. The current course focuses on the use of tuneable lasers to interrogate the spectral “fingerprints” of gases, liquids and solids for analytical purposes. Typical examples are air quality monitoring or process control in industry.

The lecture block in the first half of the course will give a comprehensive introduction into the following topics

  • Infrared molecular spectra
  • Tuneable lasers
  • Spectroscopic techniques (absorption, photoacoustic spectroscopy, cavity-based methods)
  • Background signals, noise and detection limits
     

The seminar talks in the second block will focus on the application of differ-ent spectroscopic methods for analytical tasks. At the start of the course, students will choose from a list of provided topics to prepare a talk and a short written summary. The preparation will be supported by topical literature and discussion sessions with the course staff. Duration of the talks will be appr. 30 minutes, followed by a discussion of content and presentation style.

Prerequisits:

Advanced Optics and Lasers (recommended)

Literature:

 


Physical Processes of Self-Assembly and Pattern Formation

Dozent: Prof. Dr. Günter Reiter
Zeit: 3 + 2 st, Do 10-11, Fr 10-12
Ort: SR GMH
Übungen: Mi 10-12, Hochhaus Seminarraum 3.OG
7 ECTS
Beginn:
ILIAS


Program:

Goal:
Questions about how organization and order in various systems arises have been raised since ancient times. Self‐assembling processes are common throughout nature and technology. The ability of molecules and objects to self‐assemble into supra‐molecular arrangements is an important issue in nanotechnology. The limited number of forms and shapes we identify in the objects around us represent only a small sub-set of those theoretically possible. So why don't we see more variety? To be able answering such a question we have to learn more about the physical processes responsible for self-organization and self-assembly.

Preliminary program:
"Physical laws for making compromises"
Self‐assembly is governed by (intermolecular) interactions between pre‐existing parts or disordered components of a system. The final (desired) structure is 'encoded' in the shape and properties of the basic building blocks. In this course, we will discuss general rules about growth and evolution of structures and patterns as well as methods that predict changes in organization due to changes made to the underlying components and/or the environment.

Students will learn how structural organization, i.e., the increase in internal order of a system, can lead to regular patterns on scales ranging from molecular to the macroscopic sizes. They will understand the physics of how molecules or objects put themselves together without guidance or management from an outside source.

 

Previous knowledge:

Experimentalphysik IV (Condensed Matter)

 

Literature:

  • Yoon S. LEE, Self-Assembly and Nanotechnology: A Force Balance Approach, Wiley 2008
  • Robert KELSALL, Ian W. HAMLEY, Mark GEOGHEGAN, Nanoscale Science and Technology, Wiley, 2005
  • Richard A.L. JONES, Soft Machines: Nanotechnology and Life, Oxford University Press, USA 2008
  • Philip BALL, Shapes, Flow, Branches. Nature's Patterns: A Tapestry in Three Parts, Oxford University Press, USA
  • J.N. ISRAELACHVILI, Intermolecular and Surface Forces, Third Edition, Elsevier, 2011

 


Nano-Photonics – Optical manipulation and particle dynamics

Dozent: Prof. Dr. Alexander Rohrbach, Dr. Julian Roth
Zeit: 3 st., Di 10-13
Ort: online
7 ECTS
Beginn:
ILIAS

Motivation:

You think basic research and applied research cannot be well combined? You think that directing a laser pointer beam into a droplet of coffee results in infinitely complex physics, but explaining the physics therein is not good for anything? You want to learn complex physics of technologies that is of social benefit? If yes, this lecture can be interesting to you!

In this lecture you will learn

- the direct relation from the Maxwell equations and the electromagnetic force density to optical forces and optical tweezers, which allowed to control molecular processes mainly in cellular biology and medicine

- how photons transfer momentum to microscopic objects and how scattered photons transfer information about the state of the objects. In particular coherent light can encode extremely much information about the state of small objects, which, driven by thermal forces, continuously change their position and orientation relative to their environment. All this can be directly measured through µs-nm particle tracking.

- how smallest probes can interact on a molecular scale with their environment, which can be analyzed by correlations of changes in the probe’s states. In this way, the interaction of probes with living cells gives new insights into cellular diseases. This includes not only bacterial and viral infections, but also exposure of particulate matter to lung cells.

Contents

  • Introduction
  • Light – Carrier of Information and Actor
  • Microscopy und Light Focussing
  • Light Scattering
  • Manipulation by Optical Forces
  • Particle Tracking beyond the Uncertainty Regime
  • Thermal Motion and Calibration
  • Photonic Force Microscopy
  • Applications in Biophysics and Medicine
  • Time-Multiplexing and holographic optical traps
  • Applications in Micro- and Nano-Technology
  • Appendix

 


Theoretical Astrophysics: Stellar Structure, Evolution, and Pulsations

Dozent: PD Dr. Markus Roth
Zeit: 2 + 1 st., Mi 16-18
Ort: SR Westbau 2.OG
5 ECTS
Beginn:
ILIAS


Program:

Screencasts of the lectures will be available for the students. Please contact Mr Roth for further details.
 

1. Stellar Structure and Evolution

  • Stellar Structure Equations
  • Physics of gas and radiation in stellar interiors
  • Nuclear processes
  • Stellar Models
  • Stellar evolution and life-cycle
  • Supernova, Neutron Stars, Black Holes
     

2. Stellar Pulsations

  • Observations of stellar pulsations
  • Linear adibatic oscillations
  • Magneto-hydrodynamics
  • MHD-Waves (Alfven-waves, slow and fast MHD waves)
  • Helioseismology
  • Asteroseismology

 

Prerequisits:

Introductory knowledge on astronomy and astrophysics
 

Literature:

  • Aerts C. et al., "Asteroseismology", Springer Verlag
  • Prialnik D., "Stellar Structure and Evolution", Cambridge University Press
  • Spruit, H., "Essential magnetohydrodynamics for astrophysics", Lecture Notes

  


Cosmology

Dozent: JProf. Dr. Stefan Vogl
Zeit: 2 + 1 st., Mi 10-12
Ort: SR I
5 ECTS
Beginn:


Program:

  • Geometry and Dynamics of the smooth Universe
  • Thermal history and origin of matter
  • Cosmological perturbation theory
  • Structure formation and CMB
  • Inflation (optional)

 

Prerequisits:

Special Relativity, Thermodynamics, basic knowledge of General Relativity helpful but not required
 

Literature:

  • S. Dodelson: "Modern Cosmology", Academic Press, 2003
  • Lecture Notes by D. Baumann, http://cosmology.amsterdam/education/cosmology/
  • For the advanced reader: S. Weinberg: "Cosmology", Oxford University Press, 2008

 


Computational Neuroscience

Dozent: Prof. Dr. Stefan Rotter, Prof. Dr. Carsten Mehring
Zeit: 5 st
Ort: Bernstein Center Freiburg, Lecture Hall (Hansastrasse 9a, 79104 Freiburg)
Beginn:
Registration for this course by email to birgit.ahrens@biologie.uni-freiburg.de


Program:

Mathematical concepts and methods:

  • Basic probability and statistics
  • Linear and nonlinear dynamical systems
  • Phase plane methods
  • Continuous stochastic processes and point processes
  • Graphs and networks, random graphs

 

Models of biological neurons and networks:

  • Hodgkin-Huxley theory of the action potential
  • Stochastic theory of ionic channels
  • Synaptic integration and spike generation
  • Dynamics of spiking networks and population dynamics
  • Primary visual cortex and processing of visual information
  • Models of plasticity, growth and maturation

 

Models of biological learning and control:

  • Reinforcement learning
  • Adaptive Control
  • Bayesian learning
  • Structure learning

 

Literature:

A bibliography and web-links to complementary reading for each course day will be provided along with the slides of the lecture.

 


Simulation of Biological Neuronal Networks

Dozent: Prof. Dr. Stefan Rotter
Zeit: 2 st, Block, 1 week (date will be announced)
Ort: Bernstein Center Freiburg, Lecture Hall (Hansastrasse 9a, 79104 Freiburg)
Beginn:
Course-Link
Registration for this course by email to birgit.ahrens@biologie.uni-freiburg.de

 


Program:

This course covers the fundamentals of simulating networks of single-compartment spiking neuron models. We start from the concepts of a point neuron and then introduce more complex topics such as phenomenological models of synaptic plasticity, connectivity patterns and network dynamics.

 

Literature:

See http://www.nest-initiative.org/ for some general information and an online tutorial on the BNN simulator NEST.

 


Astronomisches Praktikum

Dozent: Prof. Dr. Markus Roth, Dr. Rolf Schlichenmaier
Zeit: 4 st., Kompaktkurs Ende Juli / Anfang August
Vorbesprechung: XX.05.2022, 12:00 Uhr, SR I, Hochhaus
Bei Interesse bitte eine kurze Anmeldung bis XX.04.2021 per e-mail  an mroth@leibniz-kis.de
Termin: n.V.
Ort: Schauinsland-Observatorium des KIS
Maximale Teilnehmerzahl: 5
Veranstaltungs link

Programm:

Das Astronomische Praktikum findet als Kompaktkurs statt, zu Beginn der vorlesungsfreien Zeit. Alle Versuche werden im Observation Schauinsland des KIS durchgeführt.
Das Programm umfasst

  • Bestimmung der Magnetfeldstärke in Sonnenflecken
  • Messung der Sonnenrotationsgeschwindigkeit
  • Bildrekonstruktionsverfahren
  • Photometrie von Sternhaufen
  • Einführung in die digitale Datenverarbeitung

 

Die Anleitungen sind auf der Vorlesungsseite des KIS abrufbar.
 

Vorkenntnisse:

Vorlesung "Einführung in die Astrophysik"
 

Einführende Literatur:

Unsöld & Baschek: Der neue Kosmos

 


Term Paper: tba

Lecturer: NN
Time:
Room:
6 ECTS
Start:

Program:

 


Term Paper: tba

Lecturer: NN
Time:
Room:
6 ECTS
Start:

Program:

Personal tools