frias.jpg

dpglogo.gif

 

dfg.png

yearoflight.jpg

Uni-Logo
Sektionen
Sie sind hier: Startseite Studium & Lehre Vorlesungsverzeichnis Kommentare Wintersemester 2017/18
Artikelaktionen

Kommentare Wintersemester 2017/18

Veranstaltungsbeschreibungen in deutsch und für englisch-sprachige Master-Veranstatungen in englischer Sprache. Course descriptions in German and for English-taught Master courses in English.

 


Vorkurs Mathematik

Dozent: Dr. Andreas Härtel
Zeit: Blockveranstaltung ganztägig, vor Vorlesungsbeginn: Mo 02.10., Mi 04.- Sa 07.10.2017
Vorlesung: täglich 9-12
Übungen: nachmittgs 14-17 in Gruppen
Ort:
Mo, Mi in HS Rundbau (Albertstrasse 21) - Lageplan
Do-Sa in HS I (Physikhochhaus)

Programm:

Auffrischen mathematischer Grundkenntnisse:
Rechnen, Ableiten, Integrieren, Analytische Geometrie und Lineare Algebra, Statistik und Wahrscheinlichkeitsrechnung

Vorkenntnisse:

keine, Anmeldung nicht erforderlich!

Einführende Literatur:

  • Glaeser, Der mathematische Werkzeugkasten, Elsevier (2006)
  • Heft, Mathematischer Vorkurs, Elsevier (2006)
  • Korsch, Mathematik-Vorkurs, Binomi Verlag (2004)
  • Weltner, Mathematik für Physiker (12. Auflage), Springer (2001)

Wissenschaftliches Programmieren

Dozent: PD Dr. Michael Walter
Zeit: 2 + 2 st., Di 10-12
Ort: HS I
Beginn: 24.10.2017

Programm:

Einführung in das wissenschaftliche Programmieren am Beispiel der mächtigen Programmiersprache Python. Der Kurs behandelt die Grundlagen bis hin zu numerischen Problemen mit "numeric python", dem Grafikpaket "pylab/matplotlib", numerische Integration und das symbolische Rechnen mit "sympy".


Weitere Bestandteile sind eine Einführung in "Mathematica" (symbolisches Rechnen) und die Python-Schnittstelle zu ROOT (root.cern.ch) "PyROOT".

 

Voraussetzungen:

Bei Verwendung eines eigenen Rechners empfiehlt sich folgende Software zu installieren:

 

Einführende Literatur:

 


Experimentalphysik I
(Mechanik, Gase und Flüssigkeiten)

Dozent: Prof. Dr. Günter Reiter
Zeit: 4 + 2 st., Mo, Mi 10-12
Ort: Gr. HS
Beginn: 16.10.2017
link zur Vorlesung

Programm:

  • Kinematik des Massenpunktes und Newtonsche Mechanik:
    Gleichförmige und gleichmäßig beschleunigte Bewegung, Newtonsche Gesetze, Inertialsysteme, Galilei Transformation, kinetische und potentielle Energie, Impuls
  • Mechanik starrer und deformierbarer Körper:
    Schwerpunkt, Trägheitsmomente, Steinerscher Satz, Haft-/Gleitreibung
  • Schwingungen und Wellen:
    Erzwungene und gedämpfte Schwingung, Resonanz, gekoppelte Oszillatoren, Ausbreitung von Wellen, stehende Wellen, Akustik
  • Gase und Flüssigkeiten:
    Kinetische Gastheorie, Geschwindigkeitsverteilung, Druck, Hydrostatik, Strömungen, Kontinuitätsgleichung
  • Wärmelehre und Thermodynamik:
    Wärmekapazität, Wärmetransport, innere Energie, Erster Hauptsatz der Thermodynamik, ideales Gas, adiabatische Zustandsänderung, Zweiter Hauptsatz der Thermodynamik, Entropie, Carnot Prozess, Aggregatzustände

 

Vorkenntnisse:

Schulphysik und -mathematik, Inhalte des Vorkurs Mathematik (empfohlen, Skript online)

Einführende Literatur:

  • Gerthsen, Physik, Springer-Verlag
  • Tipler, Physik, Spektrum Verlag 
  • W. Demtröder, Experimentalphysik 1, Mechanik und Wärme, Springer-Verlag

Experimentalphysik III
(Spezielle Relativitätstheorie, Optik und Quantenphysik)

Dozent: Prof. Dr. Tobias Schätz
Zeit: 4 + 2 st., Di, Mi 12-14
Ort: Gr. HS
Beginn: 17.10.2017

Programm:

Die Vorlesung Experimentalphysik III vermittelt die experimentellen Grundlagen im Bereich der Optik, Atom- und Quantenphysik.

Folgende Themen werden behandelt:

  • Grundlagen der speziellen Relativitätstheorie: Inertialsysteme, Lorentz- Transformation, Zeitdilatation, Längenkontraktion
  • Fortgeschrittene Optik: Polarisation von Licht, Doppelbrechung, Polarisa- tionsoptik, Gaußsche Strahlen, optische Resonatoren, Laser, Grundlagen der nicht-linearen Optik
  • Quantenphysik: Quantenphänomene, Unschärferelation, Schrödinger-Gleichung, Axiome der Quantenmechanik, Bahn-Drehimpulse, Wasserstoffatom
  • Struktur einfacher atomarer Systeme, Periodensystem, Wechselwirkung Licht-Materie

 

Vorkenntnisse:

Experimentalphysik I und II
 

Einführende Literatur:

 


Experimentalphysik V
(Kern- und Elementarteilchenphysik)

Dozent: Prof. Dr. Marc Schumann
Zeit: 4 + 2 st., Mo, Mi 10-12
Ort: Mo HS I, Mi HS II
Beginn: 16.10.2017

Programm:

  • Grundlagen von Streu- und Zerfallsprozessen
  • Struktur und Eigenschaften von Atomkernen, Kernmodelle und Kernzer- fälle
  • Teilchenbeschleuniger und Teilchendetektoren
  • Anwendungen der Kern- und Teilchenphysik
  • Symmetrien, Spektrum der Elementarteilchen, elektromagnetische, starke und schwache Wechselwirkung
  • Standardmodell der Teilchenphysik und seine Grenze

 

Vorkenntnisse:

Experimentalphysik I-IV


Einführende Literatur:

 


Analysis für Physiker

Dozent: apl Prof. Dr. Thomas Filk
Zeit: 4 + 2 st., Di, Mi 8-10
Ort: HS I
Beginn: 17.10.2017


Inhalt: 

  • Grundlagen der Mengenlehre, Äquivalenz- und Ordnungsrelationen
  • Einführung in die komplexen Zahlen, Euler-Formel, Beziehungen zu trigo- nometrischen und hyperbolischen Funktionen.
  • Beweisverfahren
  • Funktionen, Umkehrfunktionen
  • Folgen, Grenzwerte, Cauchy-Grenzwert, offenen und geschlossene Mengen
  • Reihen, Konvergenzkriterien, Stetigkeit von Funktionen
  • Ableitung von (auch mehrkomponentigen) Funktionen, auch in mehreren Variablen, Ableitungsregeln
  • Koordinatensysteme, speziell Polar-, Zylinder- und Kugelkoordinaten.
  • ntegration, Integrationsregeln, Wegintegration, Flächen- und Volumenintegration, Gaußscher und Stokes’scher Satz

 

Vorkenntnisse:

Empfohlen werden die Inhalte des Vorkurs Mathematik (ein Skript ist über die Webseite verfügbar).
 

Einführende Literatur:

 


Theoretische Physik II
(Elektrodynamik)

Dozent: Prof. Dr. Tanja Schilling
Zeit: 4 + 2 st., Mo 12-14, Do 10-12
Ort: HS I
Beginn: 16.10.2017


Programm: 

  • Maxwell-Gleichungen
  • Elektrostatik und Magnetostatik im Vakuum
  • Lösung linearer Differentialgleichungen
  • Elektromagnetische Wellen
  • Elektrodynamik im Medium
  • Verbindung zur speziellen Relativitaetstheorie

 

Vorkenntnisse:

Analysis für Physiker, Lineare Algebra, Theoretische Physik I
 

Einführende Literatur:

  • Skript - siehe ILIAS
  • Jelitto, Theoretische Physik III, Aula Verlag
  • Jackson, Klassische Elektrodynamik, de Gruyter
  • Nolting, Grundkurs Theoretische Physik, Bd. 3, Elektrodynamik, Springer
  • Landau, Lifschitz, Lehrbuch der Theoretischen Physik, Bd. II, KLassische Feldtheorie, Akademie
  • Sommerfeld, Vorlesungen über Theoretische Physik, Bd. III, Elektrodynamik, Harri Deutsch
     

Theoretische Physik IV
(Statistische Physik)

Dozent: Prof. Dr. Jens Timmer
Zeit: 4 + 2 st., Di, Fr 10-12
Ort: HS II
Beginn: 17.10.2017
Link zur Vorlesung


Programm: 

  • Grundlagen der theoretischen Thermodynamik. Nullter, erster, zweiter und dritter Hauptsatz der Thermodynamik, Gibb'sche Fundamentalform, statistischer Entropiebegriff, thermodynamische Potenziale, Legendre-Transformationen; thermische und kalorische Zustandsgleichung, Maxwell-Relationen, einfache Beziehungen zwischen Materialgrößen; speziell die Zustandsgrößen und Beziehungen beim freien Gas. Zyklische Prozesse (Carnot-Prozess, Stirling-Prozess), Wirkungsgrad.
  • klassische und quantenmechanische Beschreibung von thermodynamischen Gleichgewichtszuständen (Gesamtheiten). Zustandssummen der kanonischen und Großkanonischen Gesamtheit. Maxwell-Verteilung, barometrische Höhenformel, Virialsatz, klassische Störungsrechnung.
  • Freie Quantengase: Bose-Gas, Bose-Einstein-Kondensation; Fermi-Gas bei tiefen Temperaturen, Photonen (Planck'sche Strahlungsformel), Phononen, thermodynamische Freiheitsgrade. Dia-, Para- und Ferromagnetismus.
  • Einführung in die Theorie der Phasenübergänge, Landau-Theorie des Phasenübergangs, kritische Exponenten.

 

Vorkenntnisse:

Theoretische Physik I-III, Analysis und Lineare Algebra
 

Einführende Literatur:

  • T. Fließbach. Statistische Physik
  • J. Honerkamp. Statistical Physics
  • W. Nolting. Theoretische Physik 6. Statistische Physik

 


Datenanalyse für Naturwissenschaftler/innen: Statistische Methoden in Theorie und Praxis

Dozent: apl Prof. Dr. Ulrich Landgraf
Zeit: 4 + 2 st., Mo, Mi 14-16 (Mi 14-tgl.)
Ort: HS II
Beginn: 16.10.2017

Programm:

Zur Einführung werden die Konzepte und Rechenmethoden der Statistik vorgestellt. Es werden die wichtigsten Wahrscheinlichkeitsverteilungen mit ihren Eigenschaften und Anwendungsbereichen diskutiert. Die "Monte-Carlo-Methode" zur Simulation von Zufallsereignissen wird besprochen.

Ein wichtiger Teil der Vorlesung behandelt die Parameterschätzung mit den Methoden der "Maximum Likelihood" und der "kleinsten Fehlerquadrate".

Im letzten Teil der Vorlesung geht es dann um den Test von statistischen Hypothesen, d.h. es wird erklärt, wie man die Signifikanz berechnet, mit der eine Hypothese akzeptiert oder zurückgewiesen wird. Außerdem wird besprochen, wie Konfidenzintervalle und Ausschlussgrenzen bestimmt werden.

Die Vorlesung wird von Übungen begleitet, in denen u. a. auch simulierte Datensätze mit dem Computer erzeugt und statistisch ausgewertet werden.
 

Vorkenntnisse:

Elementare Kenntnisse der Differential- und Integralrechnung.

 

Einführende Literatur:

  • Cowan, Statistical Data Analysis, Oxford Univ Press
  • Brandt, Datenanalyse: Mit statistischen Methoden und Computerprogrammen, Spektrum Akademischer Verlag
  • Barlow, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, Wiley VCH
  • Blobel und Lohrmann, Statistische und numerische Methoden der Datenanalyse, Teubner Verlag

 


Biophysik der Zelle

Dozent: Prof. Dr. Alexander Rohrbach, Dr. Felix Jünger
Zeit: 3 + 2 st., Di 10-13
Ort: IMTEK, Gebäude 52, SR 02-017
Beginn: 17.10.2017

Programm:

Die Vorlesung stellt einen Streifzug durch die moderne Zellbiophysik dar, adressiert Fragen der aktuellen Forschung und stellt moderne Untersuchungsmethoden vor. Dies beinhaltet klassische, aber auch neueste physikalische Modelle und Theorien, welche in Kombination mit raffinierten Messmethoden einen erheblichen Fortschritt in der Biophysik, ermöglicht haben. Die angewandten physikalischen Methoden beflügeln nicht nur die Biologie und Medizin, sondern auch die Physik komplexer Systeme, welche mit der lebenden Zelle ein unvergleichliches Niveau an Selbstorganisation und Komplexität erreicht. Die Vorlesung richtet sich an Physiker und Ingenieure im Hauptstudium. Sie bietet eine bunte Mischung aus Physik, Biologie und Chemie, Mathematik und Ingenieurswissenschaft, welche mit zahlreichen Bildern und Animationen (sowie den Übungen) veranschaulicht werden.

Themen:

  1. Struktur und Aufbau der Zelle oder Das Rezept für zellbiophysikalische Forschung
  2. Diffusion und Fluktuationen
  3. Mess- und Manipulationstechniken
  4. Biologisch relevante Kräfte
  5. Biophysik der Proteine
  6. Polymerphysik
  7. Viskoelastizität und Mikro-Rheologie
  8. Die Dynamik des Zytoskeletts
  9. Molekulare Motoren
  10. Membranphysik

 

Vorkenntnisse:

 

Einführende Literatur:

  • Joe Howard: Mechanics of Motor Proteins and the Cytoskeleton
  • Gary Boal: Mechanics of the Cell
  • Rob Phillips : Physical Biology of the Cell

 


Grundlagen der Halbleiterphysik / Fundamentals of Semiconductors & Optoelectronics

Dozent: apl Prof. Dr. Joachim Wagner
Zeit: 3 st., Fr 8-11
Ort: SR Westbau 2.OG
Beginn: 20.10.2017

Programme:

  • Inorganic crystalline semiconductor materials (such as Si and GaAs)
  • Fabrication of bulk semiconductor crystals and epitaxial layers
  • Electronic band structure, tight-binding vs. nearly free electron approach
  • Effective mass of electrons and holes, n- and p-type doping
  • Density of states, statistics of electrons and holes • Electrical transport by electrons and holes, electric fields and currents
  • Quantization effects in semiconductors, quantum films and superlattices
  • p-n-junction, photodiode, light emitting diode (LED), diode laser

 

Preliminaries/Previous knowledge:

Solid-state physics and theoretical physics at the level of a BSc in Physics

Literature:

  • H. Ibach, H. Lüth, „Festkörperphysik" (Springer, 2009)
  • K. Seeger, „Semiconductor Physics“ (Springer, 2004)
  • P. Yu, M. Cardona, „Fundamentals of Semiconductors“ (Springer, 2010)

 


Advanced Quantum Mechanics

Lecturer: Prof. Dr. Andreas Buchleitner
Time: 4 + 3 st., Mi, Fr 10-12
Room: HS I
Start: 18.10.2017


Programme:

  • Scattering theory: scattering amplitude and cross-section, partial wave expansion, Lippmann-Schwinger equation and Born series.
  • Fundamentals of the representation theory of groups, in particular of the rotation group SO(3). Tensor product representations and irreducible representations. Wigner-Eckart theorem. Applications to angular momentum and spin couplings in atomic, molecular and condensed matter physics.
  • Time-dependent perturbation theory: Dyson-expansion, Fermi’s Golden Rule, examples of application to important time-dependent quantum processes.
  • Many-particle systems: identical particles, spin-statistic theorem, variational principles, Hartree and Hartree-Fock approximations.
  • Interaction between radiation and matter. Quantization of the electromagnetic field. Interaction Hamiltonian, emission and absorption.
  • Relativistic quantum mechanics and quantum field theory; Dirac equation, quantization of Klein-Gordon and Dirac’s equation.


Literature:

  • F. Schwabl, Quantum Mechanics (2007, Springer)
  • W. Greiner, Quantum Mechanics, An Introduction (Vol. 4, 2001, Springer)
  • C. Cohen-Tannoudj, Quantum Mechanics 2 (2009, de Gruyter)
  • D. J. Tannor, Introduction to Quantum Mechanics (2007, Univ. Science)

 


Complex Quantum Systems

Lecturer: apl Prof. Dr. Heinz-Peter Breuer
Time: 4 + 2 st., Mi, Fr 12-14
Room: SR GMH
Start: 18.10.2017


Programme:

  • Quantum states
  • Pure and mixed states, density matrices, quantum entropies
  • Composite quantum systems
  • Tensor product, entangled states, partial trace and reduced density matrix
  • Open quantum systems
  • Closed and open systems, dynamical maps, quantum operations, complete positivity and Kraus representation
  • Dynamical semigroups and quantum master equations
  • Semigroups and generators, quantum Markovian master equations, Lindblad theorem
  • General properties of the master equation
  • Pauli master equation, relaxation to equilibrium, correlation functions, quantum regression theorem
  • Decoherence
  • Destruction of quantum coherence through interaction with an environment, decoherence versus relaxation
  • Microscopic theory
  • System-reservoir models, Born-Markov approximation, microscopic derivation of the master equation
  • Applications
  • Quantum theory of the laser, superradiance, quantum transport, quantum Boltzmann equation
  • Non-Markovian quantum dynamics
  • Quantum memory effects, system-environment correlations, information flow, non-Markovian master equations

Prerequisites: Advanced Quantum Mechanics

Literature:

  • H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)
  • M. Hayashi, Quantum Information (Springer, Berlin, 2006)
  • M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
  • C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991)
  • R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987)

 


Quantum chromodynamics and collider physics

Lecturer: Prof. Dr. Stefan Dittmaier
Time: 4 + 2 st., Mo 12-14, Do 14-16
Room: Mo HS II, Do SR I
Tutorials: Mi 14-16, SR WB 2.OG
Start: 16.10.2017
lecture link


Content:

  • Quantization of field theories via functional integrals
  • Perturbation theory and Feynman diagrams
  • Gauge theories and their quantization
  • BRS symmetry and Slavnov-Taylor identities
  • Gauge theory of strong interaction (quantum chromodynamics)
  • Quantum corrections and renormalization
  • renormalization group equations
  • Jet production in e+e- annihilation
  • Parton model for hadronic particle reactions
  • Parton distribution function and DGLAP evolution
  • Deep inelastic elektron-nucleon scattering
  • Quantum corrections to the Drell-Yan process

 

Prerequisits:

Quantum mechanics, electrodynamics and special relativity,
recommended: Introduction into relativistic quantum field theory
 

Literature:

  • Böhm/Denner/Joos: "Gauge Theories of the Strong and Electroweak Interaction"
  • Cheng/Li: "Gauge Theory of Elementary Particle Physics"
  • Collins: "Renormalization"
  • Dissertori/Knowles/Schmelling: "Quantum Chromodynamics"
  • Ellis/Stirling/Webber: "QCD and Collider Physics"
  • Itzykson/Zuber: "Quantum Field Theory"
  • Muta: "Foundations of Quantum Chromodynamics"
  • Peskin/Schroeder: "An Introduction to Quantum Field Theory"
  • Sterman: "Quantum Field Theory"
  • Weinberg: "The Quantum Theory of Fields, Vol.1: Foundations"
  • Weinberg: "The Quantum Theory of Fields, Vol.2: Modern Applications"

 


Theoretical Quantum Optics

Lecturer: PD Dr. Thomas Wellens
Time: 4 + 2 st., Di, Do 14-16
Room: SR GMH
Start: 17.10.2017


Program:

  1. Introduction
  2. Quantum mechanics
    Hilbert space, operators, states, Schrödinger-, Heisenberg- and interaction picture
  3. Quantized electromagnetic field
    classical field, quantisation, coherent states, squeezed states, phase space representation, field correlations, photon counting statistics
  4. Light-matter interaction: general overview
    emission, absorption, scattering, multi-photon processes, radiation corrections, interaction induced by photon exchange 
  5. Coherent interaction of a two-level atom with a single field mode
    Bloch representation, Jaynes-Cummings model, Rabi oscillations, dressed states
  6. Incoherent interaction of a two-level atom with the electromagnetic continuum
    master equation, spontaneuous emission, optical Bloch equations, quantum regression theorem, resonance fluorescence

 

Prerequisits:

Theoretical Physics I - IV
 

Literature:

  • C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon-Interactions
  • L. Mandel, E. Wolf, Optical coherence and quantum optics
  • R. Loudon, The quantum theory of light
  • R. J. Glauber, Quantum theory of optical coherence

 


Classical Complex Systems

Lecturer: PD Dr. Gerhard Stock
Time: 4 + 2 st., Mo 10-12, Mi 14-16
Room: SR GMH
Start: 18.10.2017
lecture link

Synopsis:

Recent advances in theoretical and computational sciences has made it possible to achieve a "first principles" description of complex phenomena, such as the dynamical properties of materials and the functional motion of biomolecules. To this end, the lecture aims to provide an introduction into basic computational strategies (such as molecular dynamics and Monte-Carlo simulations) as well as powerful statistical theories (such as Langevin and Master Equations). The lessions are accompanied by computer exercises, which provide an hands-on experience of the topics.

Preliminary Program:

I. Introduction

II. Simulation Approach

  • First Principles Description
  • Probability Distributions and Sampling
  • Molecular Dynamics and Monte-Carlo Simulations
  • Description of Time-dependent Phenomena


III. Simulation Approach

  • First Principles Description
  • Probability Distributions and Sampling
  • Molecular Dynamics and Monte-Carlo Simulations
  • Description of Time-dependent Phenomena


IV. Nonlinear Dynamics

  • Theory of Deterministic Chaos
  • Nonlinear Models

 

Literature:

  • H.J.C. Berendsen: Simulating the Physical World
  • R. Zwanzig: Nonequilibrium Statistical Mechanics
  • N.G. van Kampen: Stochastic processes in Physics and Chemistry

 


Introduction to General Relativity

Lecturer: Prof. Dr. Jochum van der Bij
Time: 4 + 3 st., Mo, Di 10-12
Room: SR I
Start: 16.10.2017
Tutorials: Fr 14-17, SR I

Program:

  • Equivalence principles: Minkowski space, Poincare group, space-time diagrams, world lines, proper time and distance, application to simple phenomena (elevator thought experiments, twin paradox, relativistic Doppler effect, accelerated systems), Lorentz transformations and general coordinate transformations.
  • Differential geometry: manifolds and tangent spaces, forms, metric tensor, integration, Stoke’s theorem, outer derivative, Lie derivative, covariant derivative and Christoffel symbols, parallel transport, geodesics, curvature (Riemann tensor, Weyl tensor, Ricci tensor and scalar), torsion, Killing vectors, Riemann coordinates.
  • Dynamics of the gravitational field: Einstein equations, cosmological constant, energy-momentum tensor of matter systems (perfect fluids, point particles, Klein-Gordon and Maxwell theory).
  • Effects based on post-Newtonian approximations: red/blue shift effects, rotation of the perihel, effect of gravitation on clocks, deflection of light.
  • Gravitational waves: perturbative expansion of field equations, gauge invariance, origin and detection of gravitational waves.
  • Classical space times: Minkowski, Rindler, Schwarzschild, Kerr, Reissner-Nordstrøm, Kerr-Newman geometries; Robertson-Walker metrics, Friedmann universes and deSitter space. Discussion of causal structure, geodesic completeness, key coordinate systems and Carter-Penrose diagrams.
  • Optional: Einstein-Hilbert action and variational principle.
  • Optional: Modern topics in cosmology: CMB, the Inflation Model.

 

Prerequisits:

Electrodynamics, special relativity, Lagrangian mechanics


Literature:

 


Particle Detectors

Lecturer: Dr. Christian Weiser
Time: 4 st., Mo, Di 10-12
Room: SR III
Start: 16.10.2017
Tutorials: 2 st, n.V.

Programme:

In this lecture the principles of particle detection, the basic measurement concepts and technical realisations are presented. After the discussion of individual detector components and detection principles, complete, large-scale detector systems in particle and astro-particle physics are discussed. In addition, some selected applications in medical imaging and other areas are presented.

Topics:

  • Basic interactions of charged and neutral particles
  • Measurement of ionisation
  • Position and momentum measurements
  • Time measurements
  • Energy measurement in calorimeters
  • Particle identification
  • Detector systems in particle and astro-particle physics
  • Selected applications in other areas
     

Prerequisits:

Bachelor studies, Experimental Physics V (Nuclear and Particle Physics)
 

Literature:

  • H. Kolanoski und N. Wermes, Teilchendetektoren, Springer Verlag
  • K. Kleinknecht, Detectors for Particle Radiation, Cambridge University Press, 2nd edition (2008)
  • W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer Verlag
  • C. Grupen, Teilchendetektoren, BI Wissenschaftsverlag

 


Advanced Atomic and Molecular Physics

Lecturer: Prof. Dr. Giuseppe Sansone
Time: 4 + 2 st., Mo 12-14, Di 10-12
Room: SR GMH
Start: 16.10.2017
Tutorials: n.V.

Program:

  • Light-matter interaction: scattering, absorption and emission of light, dressed states, coherence, strong fields
  • Scattering of atomic and molecular systems
  • Properties of diatomic molecules: vibrations and rotations
  • Properties of polyatomic molecules: electronic states, molecular symmetries, chemical bonds
  • Modern AMO applications in science and technology

 

Prerequisits:

Experimental Physics I-IV
 

Literature: 


Advanced Particle Physics

Lecturer: Prof. Dr. Markus Schumacher
Time: 4 + 2 st., Mo 14-16, Di 12-14
Room: SR Gustav-Mie-Haus
Start: 16.10.2017

Program:

  • Introduction
    (recapitulation of notation, relativistic kinematics, natural units, particle content of Standard Model, forces, Feynman diagrams, conservation laws)
  • The electromagnetic interaction: Quantum electrodynamics (QED)
    (QED as first local gauge theory, gauge principle, Lagrangian formulation, renormalisation, running coupling, experimental tests)
  • The strong interaction: Quantum Chromodynamics (QCD)
    (QCD as non abelian gauge theory, phenomenology, experimental tests)
  • From the weak interaction to the electroweak Standard Model
    (parity violation, CP violation, electroweak „unification“, phenomenology, experimental tests)
  • The Brout-Englert-Higgs mechanism in the Standard Model
    (theory, phenomenology and experimental tests)
  • Neutrino physics
    (masses, oscillations, Dirac vs. Majorana nature , theory and experimental status)
  • Limitations of the Standard Model


Building on the knowledge acquired in the course Experimental Physics V (Kerne und Teilchen), the Standard Model of particle physics is discussed in detail. The fundamental concepts, the phenomenological consequences, and experimental tests are presented. Students will also learn how to evaluate simple Feynman diagrams. Limitations of the Standard Model, which motivate the search for extensions will be discussed at the end. The lectures are complemented by exercises, including computer simulations, with the aim to provide a solid foundation in experimental particle physics.  
 

Prerequisits:  Experimentalphysik V, Kern- und Teilchenphysik

Literature:

  • F.Halzen und A.D.Martin, Quarks & Leptons, Wiley-Verlag.
  • P. Schmüser, Feynman-Graphen und Eichtheorien für Experimentalphysiker, Springer-Verlag.
  • D. Griffiths, Introduction to Elementary Particles, Wiley-VCH-Verlag.
  • M. Thomson, Modern Particle Physics, Cambridge University Press.

 


Advanced Condensed Matter I: Solid State Physics

Lecturer: Prof. Dr. Oliver Waldmann
Time: 4 + 2 st., Mo 10-12, Mi 12-14
Room: HS II
Start: 16.10.2017

Program:

  • Atomic structure of matter
  • lattice dynamics, phonons
  • electronic structure of materials
  • optical properties
  • magnetism/superconductivity

 

Prerequisits:  Experimentalphysik I-III

Literature:

  • tba

 


Physics of Medical Imaging Methods

Lecturer: Prof. Dr. Michael Bock
Time: 2 + 1 st., Do 12-14
Room: Uniklinik, Breisacher Str. 60a, Seminarroom "Big Green"
Start: 19.10.2017
Tutorials: 1 st. n.V.

Program:

Medical imaging is becoming increasingly important in the detection of disease, in the management of the patients, and in the monitoring of a therapy. In this lecture the physical basics of different medical imaging technologies will be presented, and different clinical application scenarios will be discussed. The following topics will be addressed:

  • overview over the physics of medical imaging
  • Magnetic Resonance Imaging (MRI)
    • magnetisation, Bloch equations, relaxation times T1 and T2
    • spin gymnastics and image contrast
    • magnets, gradients and radio-frequency coils
    • quantitative MRI
    • functional MRI, flow, diffusion, perfusion measurements
  • Nuclear Medicine
    • principles of radio-tracer detection
    • scintigraphy
    • single photon emission computed tomography (SPECT)
    • positron emission tomography (PET)
  • ultrasound (US)
    • sound generation and propagation in tissue
    • US imaging
    • Doppler US
    • therapeutic applications of US (Lithotrypsy)
  • X-ray Imaging
    • properties and generation of X-rays
    • fluoroscopy
    • computed tomography
    • image reconstruction from projections
  • role of medical imaging in
    • the detection of disease
    • in patient management
    • therapy monitoring

 

Prerequisits: 

 

Literature:

  • Oppelt A: Imaging Systems for Medical Diagnostics
  • Dössel O: Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung

 


Crystal Growth Technology

Lecturer:PD Dr. A. Danilewsky
Time: 2 st., Fr 9-11
Room: R 01 015 (HS 209, Hermann-Herder-Str. 5)
Start: 20.10.2017
link

Program:

  • Fundamentals of crystal growth basics and methods is given. The overview is followed by a discussion of current aspects of bulk crystal growth for scientific and commercial production. These aspects are the use of external fields under high pressure and gravity fields like microgravity.
  • The principles of thermodynamic equilibrium in growth systems are introduced and examples are applied.
  • The problems of large industrial crystals and the solution with the use of simulation tools are presented.
     

Prerequisits:

Basic knowledge of solid state physics and crystallography
 

Literature:

  • Hurle, D.T.J. (ed.) (1993-1994): Handbook of Crystal Growth, vols 1a-2b. Elsevier, Amsterdam, 1352.
  • Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (Eds.) (2010): Handbook of Crystal Growth. Springer, Berlin, 1818.
  • Duffar, T. (Ed.) (2010): Crystal Growth processes based on capillarity. Wiley, Chichester, 566.
  • Rudolph, P. Handbook of Crystal Growth (2015), 2nd Ed. vols 1a-2b. Elsevier, Amsterdam.

 


Advanced Crystallography: Crystallographic Methodology

Lecturer: Dr. Arkadiy Simonov
Time: 2 st., Di 8-10
Room: R 01 015 (HS 209, Hermann-Herder-Str. 5)
Start: 17.10.2017
link

Program:

The Crystallographic Methodology course provide the knowledge basis to understand the correspondence of the crystal structure and its physical properties. Topics are the crystallographic terminology, the symmetry of atomic arrangements in and the analytical characterisation methods. The students become competent in applying the basic principles of crystal lattices and symmetry to crystallographic analytical problems, especially in X-ray crystallography.

The course starts with crystallographic notation and a short introduction of the concepts of symmetry, followed by applied aspects of group theory, black and white groups, and colour groups and their applications. The concept and examples of quasi-crystals will be discussed.
 

Prerequisits:

Basic knowledge of solid state physics and crystallography
 

Literature:

  • Vainshtein, B.K. (1994): Fundamentals of Crystals, 2nd Ed. Springer, Berlin
  • Haussühl, S. (2007): Physical properties of crystals (chapter 1). Wiley-VCH, Weinheim
  • Borchardt-Ott, W., Sowa H. (2013): Crystallography. Springer, Berlin

 


Theory and Modeling of Materials: Superconductivity I (Phenomenology)

Lecturer: apl Prof. Dr. Christian Elsässer
Time: 2 + 1 st., Fr 8-10
Room: SR I
Start: 20.10.2017
Tutorials: 14-tägig, 2 st., Ort und Zeit n.V.

ECTS points: 3 (three) for attendance of lectures only; 3+2 (five) for attendance of lectures, participation in exercises, and final oral exam.
 

Program:

In Superconductivity 1 (WS 2017/18), the phenomenology of superconductivity is addressed.

  • Fundamental experiments: persistent current, perfect diamagnetism, isotope effect, flux quantization.
  • Type-I and Type-II superconductivity.
  • Phenomenological theories: London, Ginzburg-Landau, Lawrence-Doniach.
  • Characteristic parameters: critical temperature T_c, critical fields and currents, penetration depth, coherence length.

 

In Superconductivity 2 (SS 2018), microscopic theories of superconductivity will be addressed.

  • Introduction to the quantum mechanics of homogeneous superconductors; Cooper's problem.
  • Electron-phonon interaction in normal metals and superconductors.
  • Theory of Bardeen, Cooper and Schrieffer; the energy gap; experimental observations.
  • Thermal and optical excitations; derivation of thermodynamic properties.
  • Quantum mechanics of inhomogeneous superconductors.

 

Prerequisits: 

Theoretical physics and solid-state physics on the level of a BSc in Physics
 

Literature:

  • M. Tinkham, Introduction to Superconductivity
  • W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications

  


Applied Quantum Field Theory

Lecturer: Dr. Robert Bennett, Prof. Dr. Andreas Buchleitner
Time: 2 + 1 st., Do 12-14
Room: SR GMH
Start: 26.10.2017
Tutorial: Fr 14-15, SR WB UG
 

Program:

This course will be a largely self-contained tour through scalar and spinor field theory, ending up at quantum electrodynamics. Emphasis will be placed on real world consequences of the underlying physics, and explicit demonstrations of the mathematical machinery used. Each topic will be attached to specific applications around the themes of vacuum fluctuations and Casimir forces, with relation to open questions in these fields.

Topics:

  • Units, co-ordinate systems and transformations
  • Klein-Gordon equation (Application: Scalar Casimir force)
  • Dirac equation (Application: Fermionic Casimir forces in the nucleon, atomic fine structure, non-relativistic limit and the emergence of spin, Klein paradox)
  • Quantum electrodynamics (Application: Electromagnetic Casimir force, Van der Waals forces, Cavity QED)
  • Interacting quantum fields (Application: The anomalous magnetic moment of the electron)



Prerequisits: 

Bachelor studies
 

Literature:

The main reading material will be the lecture script, available via ILIAS.

Additional background reading:

  • P Milonni, The Quantum Vacuum: An Introduction to Quantum Electrodynamics, Academic Press (Boston)
  • Lawrie I, A Unified Grand Tour of Theoretical Physics, Institute of Physics Publishing (Bristol)

  


Scattering Amplitudes in Quantum Field Theory

Lecturer: J.Prof. Dr. Harald Ita
Time: 3 + 1 st., Di 12-14, Fr 12-14
Room: SR II
Start: 17.10.2017
lecture link
 

Program:

  • Methods for analytic computation of scattering amplitudes (spinor helicity formalism, recursion relations)
  • Properties of scattering amplitudes (IR singularities, cancellation of unphysical singularities)
  • Integral relations (algebraic and geometric methods)
  • Unitarity method (Landau equations, reduction of integrands of loop amplitudes)
  • Extra material: differential equations method

 
The lecture is suitable as supplementary or elective course. The class aims at MSc-level, however, we can as well provide a self-contained discussion for motivated BSc students.

 

Prerequisits: 

Quantum Mechanics, QFT I
 

Literature:

  


Low Temperature Physics

Lecturer: Prof. Dr. Frank Stienkemeier
Time: 4 st, Di 8-10, Do 10-12
Room: HS II
Start: 19.10.2017


Programme:

The lecture Low Temperature Physics provides an introduction to the physical principles as well as the experimental techniques for working at low temperatures and reaching extreme low temperature conditions.

The following topics are covered:

  • Temperature-dependent material properties (Phase diagrams and physical states, thermal expansion, friction, viscosity, thermal conductivity, electrical conductivity)
  • Superfluidity
  • Matrix and helium droplet isolation techniques
  • Superconductivity
  • Generation of low temperatures (refrigerators, Joule-Thompson effect, cryo-coolers)
  • Measuring at low temperatures (temperature, pressure, levels of liquids, magnetic measurements, acoustic measurements, etc.)
  • Cryostats (thermal insulation, materials, containers and transfer lines, etc.)
  • Cold dilute samples (cold molecular beams, trapped molecules and trapped ions)
  • Ultra-cold temperatures

 

Literature:

  • Enss, Hunklinger, Tieftemperaturphysik, Springer (2000)
  • Frank Pobell, Matter and Methods at Low Temperatures, Springer (1996)
  • J.G. Weisend II, Handbook of Cryogenic Engineering, Taylor & Francis (1998)

  


Theory of Quantum Systems in Nonequilibrium

Lecturer: Prof. Dr. Michael Thoss
Time: 3 st, Mo 14-16, Do 13-14
Room: SR III
Start: 16.10.2017


Programme:

This course gives an introduction into the physics of quantum systems in nonequilibrium. Theoretical concepts and methods are introduced and applied to analyze nonequilibrium phenomena in atoms, molecules and condensed matter.

Starting point is the time-dependent formulation of quantum mechanics. Based on solutions of the time-dependent Schrödinger equation for simple quantum systems, phenomena such as wave-packet dispersion, recurrences and tunneling are analyzed. In the second part of the course, advanced quantum dynamical methods using density matrix approaches and path integrals are introduced, which allow the description of more complex systems and phenomena such as dissipation and decoherence in open quantum systems. The last part of the course is devoted to transport processes in quantum systems. In particular, charge and heat transport in nanostructures are discussed, including quantum dots and atomic or molecular wires. In these systems, the mean free path of electrons is often smaller than the dimension of the structure. As a result, transport properties differ significantly from those of macroscopic systems and phenomena such as ballistic transport, conductance quantization, nonlinear transport characteristics and Coulomb blockade are observed.

 

Prerequisites:

Quantum Mechanics, Statistical Physics

 

Literature:

  • D. Tannor: “Introduction to Quantum Mechanics – A Time-Dependent Perspective”
  • J. E. Bayfield: “Quantum Evolution – An Introduction to Time-Dependent Quantum Mechanics”
  • H.-P. Breuer, F. Petruccione: “The Theory of Open Quantum Systems”
  • Y.V. Nazarov, Y.M. Blanter: “Quantum Transport“
  • M. Di Ventra: “Electrical Transport in Nanoscale Systems”
  • G. Stefanucci, R. van Leeuwen: “Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction”

 


Experimental Polymer Physics

Lecturer: Prof. Dr. Günter Reiter
Time: Do, Fr 8-10
Room: HS I
Start: 19.10.2017
Lecture link


Program:

Polymere sind aus dem täglichen Leben und der Technologie nicht mehr wegzudenken, wenn man z.B. an Materialien wie PET-Flaschen und PVC, Nylon, Teflon oder Gummis denkt. Auch in der Natur sind Biopolymere allgegenwärtig, wie z.B. DNA, Proteine oder Zellulose. Die Vorlesung gibt eine Einführung in die experimentellen und theoretischen Konzepte zum Verständnis und der Beschreibung von Polymersystemen. Dabei werden sowohl angewandte und Materialaspekte diskutiert - wie das Fließen von Polymeren, Elastomere und kristalline Polymere - als auch aktuelle Themen aus der Grundlagenforschung wie z.B. der Glasübergang, die Dynamik in eingeschränkten Geometrien und Selbstassemblierung. Die Vorlesung behandelt grundlegende theoretische Konzepte und anschauliche Experimente, wird mit einfachen Einzelkettenphänomenen beginnen und dann stufenweise die komplexeren Strukturen und Dynamiken in Polymerlösungen, -schmelzen und -mischungen entwickeln.

On demand this lecture can be given in English.
 

Prerequisits:

Grundvorlesungen und etwas Thermodynamik

 

Literature:

  • G. Strobl, The Physics of Polymers
  • Colby & Rubinstein, Polymer Physics
     

Photonic Microscopy

Lecturer: Prof. Dr. Alexander Rohrbach, Dr. Felix Jünger
Time: 3 + 2 st., Mi 13-16
Room: SR I
Start: 18.10.2017

Program:

  1. Microscopy: History, Presence and Future
  2. Wave- and Fourier-Optics
  3. 3D optical imaging and information transfer
  4. Contrast enhancement by Fourier-filtering
  5. Fluorescence – basics and techniques 
  6. Scanning microscopy: from confocal to 4pi microscopy
  7. Microscopy with self-reconstructing beams
  8. Optical tomography
  9. Nearfield and evanescent field microscopy
  10. Super-resolution using structured illumination
  11. Multi-Photon-Microscopy
  12. Super resolution by switching single molecules

 

About the lecture:
The scientific breakthroughs and technological developments in optical microscopy and imaging have experienced a real revolution over the last 10-15 years. Hence, the 2014 Nobel-Prize for super-resolution microscopy could be seen as a logical consequence. This lecture gives an overview about physical principles and techniques used in modern photonic imaging.

Goals:
The student should learn how to guide light through optical systems, how optical information can be described very advantageously by three-dimensional transfer functions in Fourier space, how phase information can be transformed to amplitude information to generate image contrast. Furthermore one should experience that wave diffraction is not reducing the information and how to circumvent the optical resolution limit. The student should learn to distinguish between coherent and incoherent imaging, learn about modern techniques using self-reconstructing laser beams, two photon excitation, fluorophores depletion through stimulated emission (STED) or multi-wave mixing by coherent anti-Stokes Raman scattering (CARS). The lecture has an ongoing emphasis on applications, but nevertheless presents a mixture of fundamental physics, compact mathematical descriptions and many examples and illustrations. The lecture aims to encompass the current state of a scientific field, which will influence the fields of nanotechnology and biology/medicine quite significantly.

In the tutorials the contents of the lecture will be strengthened and consolidated. In particular transfer thinking will be trained. The students must work on the weekly distributed exercises and then present the results in class after one week. The solutions of the more difficult exercises might be presented by the tutor.
 

Prerequisits:

 

Literature:

 


Neutron techniques in physics and material science

Lecturer: Dr. Krunoslav Prsa, Prof. Dr. Oliver Waldmann
Time: 3 + 2 st., Do, Fr 14-16
Room: SR II
Start: 19.10.2017
Tutorials: 2 st., Do 16-18
 

Contents:

The lecture provides an overview of neutron techniques with a particular focus on neutron scattering in solid state physics and material sciences.

The following topics will be covered:

  • Neutron properties
  • Neutron instrumentation
  • Neutron scattering cross section
  • Determination of crystal structure (powder and single crystal diffraction)
  • Structural defects
  • Phase transitions
  • Neutron study of lattice dynamics (phonons)
  • Liquids and amorphous materials
  • Neutron techniques in magnetism (magnetic structure and excitations, low dimensional systems, clusters)
  • Neutron imaging
  • Surface and interface techniques

 

Prerequisits/Previous knowledge: 

Experimental physics, Introductory course on quantum mechanics

Literature:

 


Biophysics of cardiac function and signals

Lecturer: Dr. Gunnar Seemann, Prof. Dr. Peter Kohl, Dr. Franziska Schneider, Dr. Remi Peyronnet
Time: 2 + 1 st., Fr 12-14
Room: SR I
Start: 20.10.2017
Tutorials: 1 st. n.V.

Program:

The basic concept of this lecture is to examine a biological system, analyse it and define mathematical equations in order to describe the system. In this lecture, the heart is used as this system. The students learn the electrical and mechanical function of the heart and its modelling. Additionally, the bioelec-trical signals that are generated in the human body are described and how these signals can be measured, interpreted and processed. The content is explained both on the biological level and based mathematical modelling.

  • Cell membrane and ion channels
  • Cellular electrophysiology
  • Conduction of action potentials
  • Cardiac contraction and electromechanical interactions
  • Optogenetics in cardiac cells
  • Numerical field calculation in the human body
  • Measurement of bioelectrical signals
  • Electrocardiography
  • Imaging of bioelectrical sources
  • Biosignal processing

 

Prerequisits: 

Basic interest in biology and computational modelling. Knowledge in Matlab or Python are beneficial

Literature:

  • lecture slides

 


X-ray Analysis - Applications in Material and Life Sciences

Lecturer: Prof. Dr. Alex Ulyanenkov
Time: 2 + 1 st., Mo 10-14 (14-täglich)
Room: SR II
Start: 23.10.2017
Lecture link

Program:

The faculty of Mathematics and Physics offers a course on modern X-ray Analysis: Applications in Material and Life Sciences. The course covers the basics of X-ray scattering processes, the fundamental theories describing the scattering of X-ray radiation from solid and soft matter, the instrumentation for X-ray experiments and data analysis techniques. There are multiple experimental setups and interpretation methods discussed in application to various objects: from semiconductors to biological cells and proteins.
 

Abstract:

X-rays have been proven to be a powerful and reliable tool in studying a large diversity of micro- and nanoscale objects. The wavelength of X-rays is a perfect fit to the typical sizes of basic structures used in all modern technologies and science: crystallographic lattice in semiconductor thin films; biological molecules in protein crystallography; nanoscale objects like quantum dots and quantum wires in optoelectronics; and many others. This fact initiated the intensive development of various measurement techniques and instrumentation to satisfy the large variety of requirements coming from scientific and industrial communities. Information on the intrinsic structure of samples is further obtained  from the detailed analysis of the scattered and detected X-ray intensities, which demands robust theoretical methods for data interpretation. The experimental data obtained from modern X-ray
equipment contains a large amount of information hidden in the fine structure of the measured X-ray spectra. This fine structure became measurable due to the essential progress in the development of X-ray optics, detectors and X-ray sources. The growing complexity of both experiments and structure of the samples constantly stimulates the
further development of the theoretical methods for data analysis.

Students will learn about awide variety of the applications of X-ray methods in modern material researches, biological sciences, proteomics, technological processes and quality control. The obtained knowledge can be later used and applied both in scientific and academic studies and in industrial sectors for R&D and QA purposes. The area of applications covers the whole domain of natural sciences and technologies starting from structure determination of proteins and biological objects on one side and ending by the investigation of atomic ordering in modern nanostructures. Thus, the subject of course is useful for a large audience, and the market of X-ray analytical instrumentation reflects this wide application area.

There are multiple X-ray techniques used for sample evaluation, each of which is suitable for different kinds of the structures. X-ray Bragg diffraction probes samples possessing a crystallographic structure and characterizes the structure on a broad scale, from micro-crystallites in polycrystalline materials to the properties of coherent epitaxial samples averaged over large areas. The specular Xray reflectivity characterizes surface and subsurface amorphous or crystalline layers in view of their electron density profiles, layer thicknesses, and interface roughness. The X-ray small-angle scattering method exposes valuable information on the distribution and characteristics of the non-uniformities inside or on the surface of the sample. The pair-distribution function method permits us to obtain the interatomic distances for amorphous, crystalline and quasi-crystallinematerials.
 

Preliminary programme:

Introduction in X-ray analysis and basics of X-ray diffraction
  X-ray scattering and interaction with the matter
  Advantages of X-rays
  Techniques and methods
  Fundamentals of crystallography

X-ray instrumentation
  Lab equipment
  Synchrotrons
  Components: Sources, Optics, Detectors
  Measurements

Theories of X-ray scattering
  Basics of scattering theory
  Kinematical theory
  Dynamical diffraction theory
  Resolution function
  Diffraction from lateral nanostructures

X-ray investigation techniques
  Powder diffraction
  High-resolution X-ray diffraction
  X-ray Reflectivity
  Small-angle X-ray scattering
  Residual stress analysis
  Texture analysis
  Protein crystallography and single crystals
  Small molecules X-ray analysis
  Pair-distribution function method
  X-ray imaging
  X-ray topography

Applications of X-ray methods
  Material Research
  Proteomics and Small molecules
  Mineralogy and Petrochemical
  Quality Control
  Preclinical medicine, micro-tomography
  Cement, Environmental, Forensic, Heritage
  Semiconductors
  Metallurgy, Airspace and Automotive

Software for X-ray data interpretation
  Powder X-ray diffraction
  Biological SAXS
  Thin film analysis
  Texture and stress
  Structure determination

Prerequisits:
   Fundamental knowledge in Physics

Literature:

  • A.Benediktovitch, I.Feranchuk, A.Ulyanenkov, Theoretical Concepts of X-ray Nanoscale Analysis, Heidelberg: Springer, 2013
  • U.Pietsch, V.Holy, T.Baumbach, High-Resolution Xray Scattering: From Thin Films to Lateral Nanostuctures, 2nd ed., Springer, Heidelberg, 2004
  • J.Daillant and A.Gibaud, X-ray and Neutron Reflectivity: Principles and Applications, Springer, Heidelberg, 1999
  • R.E.Dinnebier and S.J.L.Billinge, Powder Diffraction: Theory and Practice, RSC Publishing, Cambridge, 2008.

 


Solar Physics

Dozent: Prof. Dr. Oskar von der Lühe
Zeit: 2 + 1 st., Mi 14-16
Ort: SR Kiepenheuer-Institut
Beginn: 18.10.2017
Lecture link

Programme:

  • The Sun in the astrophysical context
  • Internal structure of the Sun
  • Solar rotation, convection and magnetism
  • The solar atmosphere Chromosphere, corona and the solar wind
  • Sun – Earth interaction and space weather
  • The Why’s and How’s of solar observations


The lecture is targeted at students of the Master's curriculum in physics.

Prerequisits:

Experimental Physics I – IV.
Completion of an introductory course on astro-physics (e. g. bachelor course) is highly recommended.
 

Literature:

  • M. Stix, The Sun – An Introduction (2nd Ed.), Springer
  • P. Foukal, Solar Astrophysics (3rd Ed.), Wiley
  • Lecture Script (through ILIAS)
     

Term Paper: Traveling to the Sun

Lecturers: PD Dr. Markus Roth, apl Prof. Dr. Wolfgang Schmidt  /  Kiepenheuer-Inst. f. Sonnenphysik (KIS)
 

Summary:

In the very near future, two space missions will travel toward the Sun and collect information about the solar wind, the magnetic field and other properties. Both missions will combine remote-sensing and in-situ measurements. The Parker Solar Probe (NASA) will be launched in summer 2018. Closest approach (6 Mio km above the solar surface) will be in 2024. The Solar Orbiter (ESA) will be launched in February 2019 and will approach the Sun until 0.28 AU and will provide high solar latitude observations of the Sun, combined with in-situ measurements, thanks to an inclined orbit of up to 34 degrees relative to the solar equator.

Topics/Talks: tbd

  


Term Paper: Physical Foundations of Materials Science

Lecturers: apl Prof. Dr. Christian Elsässer, Dr. Daniel Urban  /  Fraunhofer-Inst. f. Werkstoffmechanik (IWM)
 

Summary:

High temperature super alloys for airplane turbines, strong hardmagnets for electric motors and generators, cheap optical transparent and conducting materials for touchscreens – the development of new materials is an essential pacemaker for technological innovation. The ability to produce, process and apply high-performance functional materials is the prerequisite to internationally competitive products and technology and the key to more resource efficiency and sustainability. This naturally requires a well-grounded knowledge of the physical principles as the basis for the understanding of material properties.

The macroscopic physical properties of a material, like e.g. electrical, magnetic, optical, thermodynamic, or mechanical properties, follow from the underlying atomic structure and the interactions between the atomic nuclei and the electrons, which obey the laws of quantum mechanics. Material science aims at studying and identifying the relations between the microscopic structure and the macroscopic properties of technological relevant materials (like metals, ceramics, glasses, ...) across all relevant length and time scales. The goal is to develop an understanding for structure-composition-property relationships in order to derive heuristic constitutive laws and design principles which enable the development of new materials with tailored properties.

This termpaper course will cover the basic physical foundations of Material Science. The choice of topics is guided by the standard textbook „Physical Foundations of Materials Science” by Günter Gottstein. In parallel, related recent scientific papers will be discussed, in order to connect to „hot topics“ and the current state of research.

Prospective topics:

  • atomic structure of solids (atomic bonding, crystal structures, glasses, experimental methods for structure characterization, ...)
  • Defects in crystals (point defects, dislocations, grain boundaries, ...)
  • Alloys (intermetallic phases, thermodynamics of alloys, ...)
  • Diffusion in metals and ceramics (and application to ion conduction in batteries)
  • Mechanical properties (elasticity, plasticity, failure, ...)
  • Microstructural properties, recrystallization, grain growth
  • Phase transformations
  • electrical properties
  • magnetic properties
  • low dimensional systems (thin films, CNT, graphene, ...)

 


Term Paper: Stochastic Dynamics

Lecturers: Prof. Dr. Tanja Schilling, Prof. Dr. Gerhard Stock
 

Summary:

Topics include Random Walks, Theorem by Bochner, Khinchin and Wiener, Brownian motion, Langevin Equations, Transition State Theory, Ratchets Monte Carlo and Molecular Dynamics Methods.

Topics/Talks: tbd

Benutzerspezifische Werkzeuge