

AG Dittmaier

Albert-Ludwigs-Universität Freiburg

Elementary particles and their interactions

Phenomena: gravitational force, stars, planets, ...

Mission of particle physics:

- push the limits of the Standard Model (SM)
- ▶ find fundamental (unifying?) structures

Our contribution:

- precise predictions for particle reactions
- concepts and techniques in (perturbative) QFT

Structure and elementary interactions of the SM

Structure and elementary interactions of the SM

with the

Test of the model

 \Leftrightarrow Exp. reconstruction of the elementary couplings

Feynman rules

Structure and elementary interactions of the SM

Higgs production and decay at the LHC

Higgs bosons couple proportional to particle masses:

 \Rightarrow Higgs production via couplings to W/Z bosons or top-quarks

Higgs production and decay at the LHC

Higgs bosons couple proportional to particle masses:

 \Rightarrow Higgs production via couplings to W/Z bosons or top-quarks

Processes at hadron colliders ($p\bar{p}/pp$):

Higgs production and decay at the LHC

Higgs bosons couple proportional to particle masses:

 \Rightarrow Higgs production via couplings to W/Z bosons or top-quarks

Processes at hadron colliders ($p\bar{p}/pp$):

Decay channels for Higgs bosons of moderate mass:

Higgs cross-section predictions with contributions from our AG

Recall:

- "total cross section"
- "differential cross section"

Important features:

- strong (QCD) corrections $\sim 10-100\%$
- electroweak (EW) corrections $\sim 1-5\%$
- band widths
 - = theoretical/parametric uncertainty

Current frontiers:

- refinements of SM predictions
- precision calculation in SM extensions (e.g. more Higgs bosons, new particles)

An event of ${\rm pp} \to {\rm H}(\to \mu^+\mu^-{\rm e}^+{\rm e}^-) + {\it X}$ observed at ATLAS/LHC

What we typically calculate ...

$$\begin{array}{l} & \sum_{i=1}^{\infty} \frac{g_{s}^{6}}{2^{4}} \, f^{afc} \, f^{bfd} \, \mu^{2(4-D)} \int \frac{\mathrm{d}^{D} q}{(2\pi)^{D}} \, \varepsilon^{\alpha, \beta}(p_{1}) \, \varepsilon^{\beta, b}(p_{2}) \\ & \times \, \overline{u}_{\mathrm{b}, k}(k_{3}) \, (\lambda^{e} \, \lambda^{c})_{kl} \, \gamma^{\mu} \, \frac{m_{\mathrm{b}} - \not q}{q^{2} - m_{\mathrm{b}}^{2}} \, \gamma^{\nu} \, v_{\mathrm{b}, l}(k_{4}) \\ & \times \, \overline{u}_{\mathrm{t}, i}(k_{1}) \, (\lambda^{d} \, \lambda^{e})_{ij} \, \gamma^{\rho} \, \frac{m_{\mathrm{t}} - \not k_{2} - \not k_{3} - \not q}{(q + k_{2} + k_{3})^{2} - m_{\mathrm{t}}^{2}} \, \gamma_{\mu} \, v_{\mathrm{t}, l}(k_{2}) \\ & \times \, \frac{\left[(q + 2p_{1} - k_{4})_{\nu} g_{\alpha\sigma} + (q - p_{1} - k_{4})_{\sigma} g_{\nu\alpha} - (2q + p_{1} - 2k_{4})_{\alpha} g_{\nu\sigma} \right]}{(q + k_{3})^{2} \, (q + p_{1} + p_{2} - k_{4})^{2} \, (q + p_{1} - k_{4})^{2} \, (q - k_{4})^{2}} \\ & \times \, \left[(2q + 2p_{1} + p_{2} - 2k_{4})_{\beta} g_{\rho\sigma} - (q + p_{1} - p_{2} - k_{4})_{\rho} g_{\beta\sigma} - (q + p_{1} + 2p_{2} - k_{4})_{\sigma} g_{\beta\rho} \right] \end{array}$$

- loop integration over D-dim. Minkowski space (D = complex)
 - ► UV singularities → renormalization
 - ▶ huge algebraic complexity → computer algebra
- multi-dim. phase-space intergation
 - ► Monte Carlo techniques, HPC @ NEMO cluster
 - ► IR singularities → subtraction / slicing techniques

What we typically calculate ...

- ▶ multi-dim. phase-space intergation
 - ► Monte Carlo techniques, HPC @ NEMO cluster
 - ► IR singularities → subtraction / slicing techniques

How can students grow into this?

Field very demanding \rightarrow solid basis in theory + mathematics needed!

Field well structured \rightarrow "learning by doing" with close guidance

MSc theses: "1st step towards research projects"

- typical goals:
 - precision ingredients for a specific particle reaction
 - issues in QFT
 - predictions in SM extensions
- ► MSc thesis = often stepping stone towards PhD

BSc theses: more like "learning projects"

- typical goal: specific basic topic in particle phenomenology or QFT
- ▶ ideal: BSc thesis in parallel to introductury QFT lecture
- ▶ BSc theses off main stream: selected topics of theoretical physics (class. mechanics, QM, ...)