
# Handbook of Modules Master-of-Science (M.Sc.)

Applied Physics

Physikalisches Institut Fakultät für Mathematik und Physik Albert-Ludwigs-Universität Freiburg



FREIBURG

| Fach                                                         | Angewandte Physik / Applied Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Abschluss                                                    | Master of Science (M.Sc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Prüfungsordnungsver-<br>sion                                 | 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Art des Studiengangs                                         | konsekutiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Studienform                                                  | Vollzeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Regelstudienzeit                                             | 4 Semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Studienbeginn                                                | Winter- und Sommersemester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Hochschule                                                   | Albert-Ludwigs-Universität Freiburg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Fakultät                                                     | Fakultät für Mathematik und Physik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Institut                                                     | Physikalisches Institut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Homepage                                                     | www.physik.uni-freiburg.de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Profil<br>des Studiengangs                                   | In the first year of their studies, participants consolidate their knowledge by at-<br>tending lectures on advanced theoretical and experimental physics, as well as<br>courses in applied physics, which can be selected from a wide range of topics.<br>In cooperation with associated institutes of the university, the university medical<br>centre and with the Fraunhofer institutes in Freiburg, the Master's program of-<br>fers the possibility for specialization in a particular area of applied physics, such<br>as optical technologies, physics in life and medical sciences, or interactive and<br>adaptive materials. During their final one-year Master thesis, students special-<br>ize in a particular field by participating in a cutting-edge research project in Ap-<br>plied Physics. |  |  |  |  |
| Ausbildungsziele/<br>Qualifikationsziele des<br>Studiengangs | The English-taught M.Sc. Applied Physics aims to continue and broaden stud<br>ies begun at bachelor level. It provides an interdisciplinary study program at the<br>interface between fundamental physical concepts and resulting modern tech<br>nologies. Participants will deepen their knowledge in modern physics and are<br>introduced to central methods of physical research, like measuring techniques<br>methods for data analysis or numerical simulation. Successful completion of the<br>Master program qualifies for a scientific career at interdisciplinary research in<br>stitutions, or a profession in industry.                                                                                                                                                                           |  |  |  |  |
| Sprache                                                      | Englisch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Zugangs-<br>voraussetzungen                                  | <ul> <li>Qualifizierter Bachelor-Abschluss in Physik oder einem gleichwertige Studien-<br/>gang:</li> <li>mindestens 32 ECTS-Punkte in Theoretischer Physik,</li> <li>mindestens 32 ECTS-Punkte in Experimenteller Physik,</li> <li>mindestens 24 ECTS-Punkte in Mathematik,</li> <li>mindestens 18 ECTS-Punkte aus physikalischen Praktika,</li> <li>Bachelor-Arbeit in Physik (10 ECTS-Punkte),</li> <li>Niveau B2 in Englisch.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

# **Preliminary notes:**

The handbook of modules does not substitute the course catalogue, which is updated every semester to provide variable information about the courses (e.g. time and location).

# **List of Abbreviations**

| M.Sc.      | Master of Science                                                                     |
|------------|---------------------------------------------------------------------------------------|
| Credit hrs | A credit hour corresponds to a course of a duration of 45 minutes per week            |
|            | (in German: Semesterwochenstunden, SWS)                                               |
| SL         | Assessed coursework ("Studienleistung"), ungraded, does not contribute to final grade |
| PL         | Exam ("Prüfungsleistung"), graded, contributes to final grade                         |
| L          | Lecture                                                                               |
| E          | Exercise/Tutorials                                                                    |
| S          | Seminar                                                                               |
| Lab        | Laboratory                                                                            |
| SoSe       | Summer semester (summer term)                                                         |
| WiSe       | Winter semester (winter term)                                                         |
| ECTS       | Credit Points based on the European Credit Transfer System (ECTS-Points)              |

# **Table of Contents**

| 1. | The Master-of-Science (M.Sc.) Applied Physics                                                                                   | 3    |
|----|---------------------------------------------------------------------------------------------------------------------------------|------|
|    | 1.1. Programme Structure                                                                                                        | 3    |
|    | 1.2. Forms of Assessment (Studienleistung SL, Prüfungsleistung PL)                                                              | 3    |
|    | 1.3. Workload / ECTS-Point System                                                                                               | 4    |
|    | 1.4. Contents of Modules                                                                                                        | 4    |
|    | 1.5. Determination of final grade                                                                                               | 5    |
| 2. | Organisation of studies                                                                                                         | 6    |
|    | 2.1. Study plan                                                                                                                 | 6    |
|    | 2.2. Specialization (optional)                                                                                                  | 6    |
|    | 2.3. Enrolment for lectures and courses                                                                                         | 6    |
|    | 2.4. Registration for exams (SL or PL)                                                                                          | 7    |
|    | 2.5. Retaking exams                                                                                                             | 7    |
| 3. | List of Modules and Description                                                                                                 | 8    |
|    | 3.1. Advanced Experimental Physics (9 ECTS)                                                                                     | 8    |
|    | 3.1.1. Advanced Atomic and Molecular Physics (9 ECTS)                                                                           | . 10 |
|    | 3.1.2. Advanced Optics and Lasers (9 ECTS)                                                                                      |      |
|    | 3.1.3. Condensed Matter I: Solid State Physics (9 ECTS)                                                                         |      |
|    | <ul><li>3.1.4. Condensed Matter II: Interfaces and Nanostructures (9 ECTS)</li><li>3.1.5. Particle Detectors (9 ECTS)</li></ul> |      |
|    | 3.2. Advanced Theoretical Physics (9 ECTS credit points)                                                                        |      |
|    |                                                                                                                                 |      |
|    | 3.2.1. Advanced Quantum Mechanics (10 ECTS)                                                                                     |      |
|    | 3.2.3. Classical Complex Systems (9 ECTS)                                                                                       |      |
|    | 3.2.4. Complex Quantum Systems (9 ECTS)                                                                                         |      |
|    | 3.2.5. Quantum Optics (9 ECTS)                                                                                                  |      |
|    | 3.2.6. Computational Physics: Materials Science (9 ECTS)                                                                        |      |
|    | 3.3. Applied Physics (18 ECTS credit points)                                                                                    | .27  |
|    | 3.3.1. Photonic Microscopy (7 ECTS)                                                                                             |      |
|    | 3.3.2. Optical Trapping and Particle-Tracking (7 ECTS)                                                                          |      |
|    | 3.3.3. Wave Optics (7 ECTS)                                                                                                     | . 34 |
|    | 3.3.4. Laser-based Spectroscopy and Analytical Methods (5 ECTS)                                                                 | . 37 |

| 3      | 3.3.5. Photovoltaic Energy Conversion (5 ECTS)                                          | 39 |
|--------|-----------------------------------------------------------------------------------------|----|
| 3      | 3.3.6. Multi-junction solar cell technology and concentrator photovolatic (3 ECTS)      | 40 |
| 3      | 3.3.7. Solar Physics (5 ECTS)                                                           | 41 |
| 3      | 3.3.8. Modern Astronomical Instrumentation (5 ECTS)                                     | 42 |
| 3      | 3.3.9. Dynamic Systems in Biology (7 ECTS)                                              | 43 |
| 3      | 3.3.10. Molecular Dynamics & Spectroscopy (7 ECTS)                                      | 44 |
|        | 3.3.11. Physics of Nano-Biosystems (5 ECTS)                                             |    |
| 3      | 3.3.12. Physics of Medical Imaging Methods (5 ECTS)                                     | 46 |
| 3      | 3.3.13. Biophysics of Cardiac Function and Signals (5 ECTS)                             | 48 |
| 3      | 3.3.14. Computational Neuroscience: Models of Neurons and Networks (7 ECTS)             | 49 |
| 3      | 3.3.15. Computational Neuroscience: Simulation of Biological Neuronal Networks (5 ECTS) | 51 |
| 3      | 3.3.16. Experimental Polymer Physics (9 ECTS)                                           | 52 |
| 3      | 3.3.17. Physical Processes of Self-Assembly and Pattern Formation (7 ECTS)              | 53 |
| 3      | 3.3.18. Fundamentals of Semiconductors & Optoelectronics(5 ECTS)                        | 55 |
| 3      | 3.3.19. Semiconductor Devices (5 ECTS)                                                  | 56 |
|        | 3.3.20. Mechanical Properties and Degradation Mechanisms (3 ECTS)                       |    |
| 3      | 3.3.21. Theory and Modeling of Materials (5 ECTS)                                       | 58 |
| 3      | 3.3.22. Quantum Transport (7 ECTS)                                                      | 59 |
|        | 3.3.23. Crystal Growth Technology (5 ECTS)                                              |    |
| 3      | 3.3.24. Low Temperature Physics (9 ECTS)                                                | 61 |
| 3      | 3.3.25. Statistics and Numerics (7 ECTS)                                                | 63 |
| 3      | 3.3.26. Computational Physics: Density Functional Theory (7 ECTS)                       | 64 |
| 3      | 3.3.27. Modelling and System Identification (6 ECTS)                                    | 65 |
| 3.4. I | Elective Subjects (10 ECTS credit points)                                               | 66 |
| 3.5    | Term Paper (6 ECTS credit points)                                                       | 67 |
| 3.6. I | Master Laboratory Applied Physics (8 ECTS credit points)                                | 68 |
| 3.7. I | Research Traineeship (30 ECTS credit points)                                            | 70 |
| 3.8. I | Master Thesis (30 ECTS credit points)                                                   | 71 |

# 1. The Master-of-Science (M.Sc.) Applied Physics

### **1.1. Programme Structure**

The Physics Institute offers a research-oriented curriculum leading to a Master of Science degree in Applied Physics. The programme comprises a total of 120 ECTS credit points, which are collected in various compulsory and elective modules as defined by the study regulations.

| Module                               | Туре          | Contact<br>hours | ECTS    | Compul-<br>sory/<br>Elective | Recom-<br>mended<br>semester | Assessment                                                                                    |
|--------------------------------------|---------------|------------------|---------|------------------------------|------------------------------|-----------------------------------------------------------------------------------------------|
| Advanced<br>Experimental Physics     | L+E           | 4 + 2            | 9       | Е                            | 1 or 2                       | SL: exercises<br>PL: written or oral exam                                                     |
| Advanced<br>Theoretical Physics      | L+E           | 4 + 2            | 9       | Е                            | 1 or 2                       | SL: exercises<br>PL: written or oral exam                                                     |
| Applied Physics                      | L+E           | variable         | 18      | Е                            | 1 or 2                       | SL: exercises<br>SL: written or oral exam<br>(9 ECTS)<br>PL: written or oral exam<br>(9 ECTS) |
| Elective Subjects                    | varia-<br>ble | variable         | 10      | Е                            | 1 or 2                       | SL: exercises and/or written or oral exam                                                     |
| Term Paper                           | S             | 2                | 6       | Е                            | 1 or 2                       | PL: presentation and<br>written report                                                        |
| Master Laboratory<br>Applied Physics | Lab           | 10               | 8       | С                            | 1 or 2                       | PL: oral exam, practical achievement, written re-<br>port, presentation                       |
| Research Traineeship                 | -             | -                | 30      | С                            | 3                            | SL: internship                                                                                |
| Master Thesis                        | -             | -                | 28<br>2 | С                            | 4                            | PL: thesis<br>SL: presentation                                                                |

Abbreviations in table:

Type = Type of course; L = Lecture; E = Exercises; S = Seminar; Lab = Laboratory;

C = Compulsory module; E = Elective module;

SL = assessed coursework ('Studienleistung'); PL = exam ('Prüfungsleistung')

# 1.2. Forms of Assessment (Studienleistung SL, Prüfungsleistung PL)

A module is successfully passed, when all corresponding assessments have been accomplished. The following forms of assessments are distinguished:

**Studienleistungen** (SL) are individual achievements, which are accomplished in combination with a corresponding course or lecture. In general SLs consist of the successful participation in written exercises or exams. In exercises, which rely on the interaction between students and lecturers or tutors, passing a SL requires also the regular attendance and active participation in the exercise classes. Details on the SL will be announced by the lecturer in the beginning of the semester. SLs are not marked (non-graded) and therefore do not contribute to the final mark.

**Prüfungsleistungen** (**PL**) are written or oral module exams, which test all components of a module. PLs are marked (graded) and contribute to the final mark of the degree according to the weight listed in 1.5.

# 1.3. Workload / ECTS-Point System

The *European Credit Transfer and Accumulation System (ECTS)* is a standard for comparing the study attainment and performance of students of higher education across the European Union and other collaborating European countries. It provides more compatibility and mobility between the programmes at different institutions and different countries.

The ECTS credit points (CP), which can be acquired, determine the time requirements for a module with one CP corresponding to a workload of about 30 hours. This workload includes participation in courses, preparation and post-processing of the courses, exercises and exams. The ECTS-System enables the accumulation of credits and marks throughout the entire studies and facilitates documenting the study progress.

### **1.4. Contents of Modules**

#### **Advanced Experimental Physics (9 ECTS credit points)**

Within this elective module students may select an advanced lecture on **Experimental Physics** by their own choice. Eligible lectures are listed in section 3.1 and in the course catalogue for the current semester.

#### **Advanced Theoretical Physics (9 ECTS credit points)**

Within this elective module students may select an advanced lecture on **Theoretical Physics** by their own choice. Eligible lectures are listed in section 3.2 and in the course catalogue for the current semester.

#### Applied Physics (18 ECTS credit points)

Within this elective module students may select various **Applied Physics** courses by their own choice. Eligible courses are listed in section 3.3 and in the course catalogue for the current semester. The final module exam (PL) covers the content of lectures with a total of at least 9 ECTS credits (a single course or a combination of courses).

#### Elective Subjects (10 ECTS credit points)

All 10 ECTS credits of this module can be acquired by selecting different courses by the student's own choice. The selected courses have to be at the Master's level, i.e. from the M.Sc. program in Applied Physics and/or other master programs. The examination committee may permit other courses on request.

Note that for courses at other faculties different application modalities and requirements may apply. Students are responsible to proof successful participation, so that the examination office of physics can transfer the credits.

#### Term Paper (6 ECTS credit points)

Within the elective module **Term Paper** students chose a seminar on a specific topic, with several seminars offered each term.

#### Master Laboratory Applied Physics (8 ECTS credit points)

In the **Master Laboratory Applied Physics** students accomplish various lab experiments with a total workload of 8 ECTS credit points. All experiments should be accomplished within the first two semesters. Successful completion of the Master Laboratory Applied Physics is prerequisite for beginning the Research Traineeship.

#### **Research Traineeship (30 ECTS credit points)**

Before working on their Master Thesis students engage in a Research Traineeship, which is accomplished within a six-month period. The goal is to acquire preliminary knowledge in a certain research topic in preparation for the final master thesis. For their traineeship and thesis students select a supervisor at the Institute of Physics or at the associated faculties and research institutes. Admission to the Research Traineeship requires successful accomplishment of the module *Master Laboratory Applied Physics* and three of the four marked courses in the modules *Advanced Experimental Physics, Advanced Theoretical Physics, Applied Physics* and *Term Paper*.

#### Master Thesis (30 ECTS credit points)

In the final six-months **Master Thesis** students perform independent research on a specialized topic in applied physics and prepare a written thesis. Typically, the Master Thesis is accomplished at the same research group as the traineeship. In a period of 2 weeks before to 4 weeks after submitting the Master Thesis, the students present the results of their thesis work in a public presentation.

#### 1.5. Determination of final grade

The individual module marks contribute to the final grade with the following weights:

| Module                            | weight |
|-----------------------------------|--------|
| Advanced Experimental Physics     | 11 %   |
| Advanced Theoretical Physics      | 11 %   |
| Applied Physics                   | 11 %   |
| Term Paper                        | 7 %    |
| Master Laboratory Applied Physics | 10 %   |
| Master Thesis                     | 50 %   |

# 2. Organisation of studies

# 2.1. Study plan

In the first year, the master students consolidate their knowledge in various compulsory and elective modules. For the first and second semester, an equally balanced workload is recommended with a total of about 30 ECTS credit points each.

The following schedule represents a suggested study plan and may differ depending on the lectures offered and the student's particular choice.

| FS | Module                                                    |                 |                                     |                             |                                     |    |  |  |
|----|-----------------------------------------------------------|-----------------|-------------------------------------|-----------------------------|-------------------------------------|----|--|--|
| 1  | Advanced<br>Experimental Physics<br>9 ECTS points         | Applied Physics |                                     | Term Paper<br>6 ECTS points | Master<br>Laboratory                | 28 |  |  |
| 2  | Advanced<br>Theoretical Physics<br>9 ECTS points          | 18 ECTS points  | Elective Subjects<br>10 ECTS points |                             | Applied<br>Physics<br>8 ECTS points | 32 |  |  |
| 3  | Research Traineeship<br>30 ECTS points                    |                 |                                     |                             |                                     |    |  |  |
| 4  | Master Thesis (Thesis and Presentation)<br>30 ECTS points |                 |                                     |                             |                                     |    |  |  |

# 2.2. Specialization (optional)

Recommendation: Successfully accomplishing the Research Traineeship and the following Master Thesis often requires an appropriate choice of lectures and courses in the first year. It is therefore recommended to select a particular field of specialization at an early stage and to select the courses accordingly.

# 2.3. Enrolment for lectures and courses

It is possible to enrol for lectures and courses in the online Campus System. Note that for participation in lectures, a registration is not mandatory but recommended. Registration is possible via the electronic campus management system HISinOne <u>www.uni-freiburg.de/go/campus</u>. In order to take part in the final exam a separate registration is required (see below).

For participation in the master laboratory students have to register directly at the head of the lab course, e.g. via the central learning platform ILIAS <u>https://ilias.uni-freiburg.de</u>. Details see on <u>www.physik.uni-freiburg.de/studium/labore</u>).

# 2.4. Registration for exams (SL or PL)

In order to finish a module all contained exercises and exams (Studienleistungen SL and Prüfungsleistungen PL) have to be passed. For participating in the exams a registration in due time via the electronic campus management system HISinOne <u>www.uni-freiburg.de/go/campus</u> is necessary.

The common registration period is typically starting with the beginning of the semester end ends one week before the first exam. Within this period registration to and deregistration from an exam is possible. The exact registration period for each semester and other modalities can be found on the webpage of the examination office <u>www.physik.uni-freiburg.de/studium/pruefungen</u>.

### 2.5. Retaking exams

Failed examinations may be retaken twice in the modules *Advanced Quantum Mechanics* and *Advanced Physics 1* and 2, and once in the modules *Term Paper, Master Laboratory*, and *Master Thesis*. It is not permitted to retake examinations to improve the marks.

# 3. List of Modules and Description

# 3.1. Advanced Experimental Physics (9 ECTS)

| <b>Module</b><br>07LE33K-ADV_EXP | Advanced Experin                                                                                                                                                                                                                                                                                                                                  | nental                                                                      | Physics                                  | ;                              |                                       | 9 ECTS          |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|--------------------------------|---------------------------------------|-----------------|--|--|
| Responsibility                   | Dean of Studies,<br>Lecturers for Experimental                                                                                                                                                                                                                                                                                                    | Physics                                                                     |                                          |                                |                                       |                 |  |  |
| Courses                          |                                                                                                                                                                                                                                                                                                                                                   | Type         Credit<br>hrs         ECTS         Assessment         Semester |                                          |                                |                                       |                 |  |  |
|                                  | Advanced<br>Experimental Physics                                                                                                                                                                                                                                                                                                                  | L                                                                           | 4                                        | 9                              | PL: written or oral exam              | WiSe +<br>SoSe  |  |  |
|                                  | Advanced<br>Experimental Physics                                                                                                                                                                                                                                                                                                                  | E                                                                           | 2                                        |                                | SL:<br>exercises                      | WiSe +<br>SoSe  |  |  |
|                                  | Total:                                                                                                                                                                                                                                                                                                                                            |                                                                             | 4+2                                      | 9                              |                                       |                 |  |  |
| Required academic<br>assessment  | The final module exam (PL) is a written exam. The course achievement (SL) is the regular and successful participation in the exercises. Students have to register online for the exercises and for the final exam according to the regulations.                                                                                                   |                                                                             |                                          |                                |                                       |                 |  |  |
| Grading                          | The final grade of the modu                                                                                                                                                                                                                                                                                                                       | le is the                                                                   | grade of th                              | e final ex                     | am.                                   |                 |  |  |
| Qualification<br>objectives      | <ul> <li>Students obtain advan</li> <li>Students are familiar wo<br/>of modern research in</li> <li>Students know advance</li> <li>Specific qualification of</li> </ul>                                                                                                                                                                           | vith currer<br>experime<br>ced tools a                                      | nt problems<br>ental physic<br>and metho | s and res<br>cs.<br>ds in part | earch topics in pa<br>ticular fields. | rticular fields |  |  |
| Course content                   | A range of advanced lectures is offered on a regular or irregular basis. The specific content of each lecture is detailed in the individual course descriptions.<br>In addition, lectures on specialized physics topics may be offered on an irregular basis and are indicated in the course catalogue as Advanced Experimental Physics lectures. |                                                                             |                                          |                                |                                       |                 |  |  |
| Workload                         | Course                                                                                                                                                                                                                                                                                                                                            | Туре                                                                        | Conta                                    | ct hrs                         | Self-studies                          | Total           |  |  |
| (hours)                          | Advanced L 60 h 180 h 270 h Experimental Physics                                                                                                                                                                                                                                                                                                  |                                                                             |                                          |                                |                                       |                 |  |  |
|                                  | Advanced<br>Experimental PhysicsE30 h180 h                                                                                                                                                                                                                                                                                                        |                                                                             |                                          |                                |                                       |                 |  |  |
|                                  | Total:                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                          |                                | 180 h                                 | 270 h           |  |  |
| Usability                        | M.Sc. Applied Physics                                                                                                                                                                                                                                                                                                                             |                                                                             |                                          |                                | 1                                     | 1               |  |  |

| Previous knowledge | Specific prerequisites are given in the individual course descriptions. |
|--------------------|-------------------------------------------------------------------------|
| Language           | English                                                                 |

# List of eligible lectures (Module: Advanced Experimental Physics):

| Module No.               | Lecture Course                                        | ECTS | Term |      |                |
|--------------------------|-------------------------------------------------------|------|------|------|----------------|
|                          |                                                       |      | WiSe | SoSe | irregu-<br>lar |
| 07LE33M-<br>ADV_EXP_AMO  | Advanced Atomic and Molecular Physics                 | 9    | Х    |      |                |
| 07LE33M-<br>ADV_EXP_OL   | Advanced Optics and Lasers                            | 9    |      | Х    |                |
| 07LE33M-<br>ADV_EXP_CM1  | Condensed Matter I: Solid State Physics               | 9    | Х    |      |                |
| 07LE33M-<br>ADV_EXP_CM2  | Condensed Matter II:<br>Interfaces and Nanostructures | 9    |      | Х    |                |
| 07LE33M-<br>ADV_EXP_PDET | Particle Detectors                                    | 9    | Х    |      |                |

9

| Module no.<br>07LE33M-ADV_EXP_AMO | Advanced Atomic and Molecular Physics 9                                                                                                                                                                                                                                                                                                                                                                                      |                                 |              |       |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|-------|--|--|--|
| Lecturer/s                        | Lecturers from Experimental Atomic, Molecular and Optical Physics                                                                                                                                                                                                                                                                                                                                                            |                                 |              |       |  |  |  |
| Course details                    | Туре                                                                                                                                                                                                                                                                                                                                                                                                                         | Type Credit hrs ECTS Examinatio |              |       |  |  |  |
|                                   | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                  | 4+2                             | 9            | PL    |  |  |  |
| Term                              | In general the course will be offered ea                                                                                                                                                                                                                                                                                                                                                                                     | ach WiSe.                       |              |       |  |  |  |
| Qualification<br>objectives       | Students have a deeper understanding of both, the properties of matter based on the nature and interactions of atoms and molecules, and of current and future technologies based on controlled quantum processes, such as employed in atomic clocks, atom interferometers, quantum optics and quantum computing, nanoscale engineering, photochemistry and energy conversion.                                                |                                 |              |       |  |  |  |
| Course content                    | <ul> <li>Light-matter interaction: scattering, absorption and emission of light, dressed states, coherence, strong fields</li> <li>Scattering of atomic and molecular systems</li> <li>Properties of diatomic molecules: vibrations and rotations</li> <li>Properties of polyatomic molecules: electronic states, molecular symmetries, chemical bonds</li> <li>Modern AMO applications in science and technology</li> </ul> |                                 |              |       |  |  |  |
| Previous knowledge                | Experimental Physics I-IV (B.Sc. Phys                                                                                                                                                                                                                                                                                                                                                                                        | ik)                             |              |       |  |  |  |
| Workload<br>(hours)               | Course                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact hrs                     | Self-studies | Total |  |  |  |
| (nours)                           | Lecture and exercises (L+E) 90 h 180 h 270 h                                                                                                                                                                                                                                                                                                                                                                                 |                                 |              |       |  |  |  |
| Usability                         | M.Sc. Physics modules: "Advanced Physics 1+2" (PL), "Advanced Physics 3" (SL) or<br>"Elective Subjects" (SL),<br>M.Sc. Applied Physics modules: "Advanced Experimental Physics" (PL), "Applied<br>Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                            |                                 |              |       |  |  |  |
| Language                          | English                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |              |       |  |  |  |

# 3.1.1. Advanced Atomic and Molecular Physics (9 ECTS)

| Module no.<br>07LE33M-ADV_EXP_OL | Advanced Optics and Lasers 9 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |       |  |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|-------|--|--|--|
| Lecturer/s                       | Lecturers from Experimental Atomic, Molecular and Optical Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |       |  |  |  |
| Course details                   | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Type Credit hrs ECTS Examination |              |       |  |  |  |
|                                  | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4+2                              | 9            | PL    |  |  |  |
| Term                             | In general the course will be offered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | each WiSe.                       |              |       |  |  |  |
| Qualification<br>objectives      | <ul> <li>Students are familiar with the physical concepts of lasers and know the fundamentals of the interaction between laser light and matter.</li> <li>Students are able to describe in detail the inherent behavior and functionality of the many different types of modern lasers.</li> <li>Students have a deep understanding of the properties of coherent laser light and are able to understand and analyze nonlinear optical effects, as e.g. induced by lasers in transparent materials.</li> <li>Students are familiar with types of lasers, and the applications of lasers</li> </ul>                                                                                                                                                                                                               |                                  |              |       |  |  |  |
| Course content                   | <ul> <li>Light-matter interaction: Absorption/emission, line broadening</li> <li>Coherence &amp; interference: temporal, spatial coherence, interferometers</li> <li>The laser principle: 2, 3, 4-level lasers, rate equation models, output power of a laser;</li> <li>Optical resonators: transmission spectra, stability</li> <li>Laser modes: Paraxial approximation, Gaussian beams, longitudinal and transverse modes, mode selection</li> <li>Short laser pulses: Dynamic solutions of rate equation, Q-switching, mode locking, intense short pulses, generation of ultra-short laser pulses</li> <li>Types of lasers and laser applications</li> <li>Nonlinear optics: Second, third order polarizability, frequency conversion, optical parametric amplification, high-harmonics generation</li> </ul> |                                  |              |       |  |  |  |
| Previous knowledge               | Experimental Physics I-IV (B.Sc. Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /sik)                            |              |       |  |  |  |
| Workload<br>(hours)              | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contact hrs                      | Self-studies | Total |  |  |  |
|                                  | Lecture and exercises (L+E) 90 h 180 h 270 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |              |       |  |  |  |
| Usability                        | M.Sc. Physics modules: "Advanced Physics 1+2" (PL), "Advanced Physics 3" (SL) or<br>"Elective Subjects" (SL),<br>M.Sc. Applied Physics modules: "Advanced Experimental Physics" (PL), "Applied<br>Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |              |       |  |  |  |
| Language                         | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |              |       |  |  |  |

# 3.1.2. Advanced Optics and Lasers (9 ECTS)

| Module no.<br>07LE33M-ADV_EXP_CM1 | Condensed Matter I:9 ECTSSolid State Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                |       |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|-------|--|--|
| Lecturer/s                        | Lecturers from Experimental Conden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sed Matter and A                 | pplied Physics |       |  |  |
| Course details                    | Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Form Credit hrs ECTS Examination |                |       |  |  |
|                                   | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4+2                              | 9              | PL    |  |  |
| Term                              | In general the course will be offered e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | each WiSe.                       |                |       |  |  |
| Qualification<br>objectives       | <ul> <li>Students know the reciprocal space description of crystals and related quasi-particles like phonons</li> <li>Students know the quantum mechanical description of electrons in periodic potentials (Bloch- and Wannier-functions)</li> <li>Students have a good overview of experimental state of the art techniques for the study of the properties of solid state materials</li> <li>Students know how to obtain and are able to interpret experimental data like measurements of electronic band structures or phonon dispersion curves</li> <li>Students know about newer developments in the experimental characterization of many-body quantum effects like magnetism or superconductivity</li> </ul> |                                  |                |       |  |  |
| Course content                    | <ul> <li>Atomic structure of matter</li> <li>lattice dynamics, phonons</li> <li>electronic structure of materials</li> <li>optical properties</li> <li>magnetism/superconductivity</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                |       |  |  |
| Previous knowledge                | Experimental Physics I-IV (B.Sc. Phy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sik)                             |                |       |  |  |
| Workload<br>(hours)               | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contact hrs                      | Self-studies   | Total |  |  |
|                                   | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90 h                             | 180 h          | 270 h |  |  |
| Usability                         | M.Sc. Physics modules: "Advanced Physics 1+2" (PL), "Advanced Physics 3" (SL) or<br>"Elective Subjects" (SL),<br>M.Sc. Applied Physics modules: "Advanced Experimental Physics" (PL), "Applied<br>Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                |       |  |  |
| Language                          | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                |       |  |  |

# 3.1.3. Condensed Matter I: Solid State Physics (9 ECTS)

| Module no.<br>07LE33M-ADV_EXP_CM2 | Condensed Matter II:9 ECTSInterfaces and Nanostructures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                |             |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|-------------|--|--|
| Lecturer/s                        | Lecturers from Experimental Conden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sed Matter and A                  | pplied Physics |             |  |  |
| Course details                    | Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Credit hrs                        | ECTS           | Examination |  |  |
|                                   | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lecture and exercises (L+E) 4+2 9 |                |             |  |  |
| Term                              | In general the course will be offered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | each SoSe.                        |                |             |  |  |
| Qualification<br>objectives       | <ul> <li>Students are able to describe interaction forces at interfaces in terms of their range and their consequences on thermodynamic and kinetic properties.</li> <li>Students understand processes at surfaces like adsorption/desorption, surface reconstruction, surface transport, or wettability.</li> <li>Students are able to describe processes as well as structural transitions at liquid, solid-liquid, and solid interfaces with respect to their hydrodynamic and electronic properties.</li> <li>Students know processes for preparing well defined and patterned surfaces.</li> <li>Students identify the relevant processes for the formation of nanostructures and structuring of surfaces at the nm-scale.</li> </ul> |                                   |                |             |  |  |
| Course content                    | <ul> <li>Surfaces and interface</li> <li>structure formation on surfaces</li> <li>self-assembly, morphology and</li> <li>optical and electronic properties</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | transitions                       |                |             |  |  |
| Previous knowledge                | Experimental Physics I-IV (B.Sc. Phy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sik)                              |                |             |  |  |
| Workload<br>(hours)               | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Contact hrs                       | Self-studies   | Total       |  |  |
| (nouro)                           | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90 h                              | 180 h          | 270 h       |  |  |
| Usability                         | M.Sc. Physics modules: "Advanced Physics 1+2" (PL), "Advanced Physics 3" (SL) or<br>"Elective Subjects" (SL),<br>M.Sc. Applied Physics modules: "Advanced Experimental Physics" (PL), "Applied<br>Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                |             |  |  |
| Language                          | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                |             |  |  |

# 3.1.4. Condensed Matter II: Interfaces and Nanostructures (9 ECTS)

| Module no.<br>07LE33M-<br>ADV_EXP_PDET | Particle Detectors                                                                                                                                                                                                                                | Particle Detectors 9 E                                                                                                                                                                                               |                   |             |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|--|--|
| Lecturer/s                             | Lecturers from Experimental Particle                                                                                                                                                                                                              | Physics                                                                                                                                                                                                              |                   |             |  |  |
| Course details                         | Туре                                                                                                                                                                                                                                              | Credit hrs                                                                                                                                                                                                           | ECTS              | Examination |  |  |
|                                        | Lecture and exercises (L+E)                                                                                                                                                                                                                       | 4+2                                                                                                                                                                                                                  | 9                 | SL or PL    |  |  |
| Term                                   | In general the course will be offered e                                                                                                                                                                                                           | ach WiSe                                                                                                                                                                                                             |                   |             |  |  |
| Qualification<br>objectives            | <ul> <li>Students are able to understand</li> <li>Students are able to understand</li> <li>Students are able to design a page</li> </ul>                                                                                                          | the different type                                                                                                                                                                                                   | es of particle de | etectors    |  |  |
| Course content                         | <ul> <li>General properties of particle det</li> <li>Tracking detectors</li> <li>Time measurement</li> <li>Energy measurement</li> <li>Particle identification</li> <li>Electronics, trigger and data acq</li> </ul>                              | <ul> <li>Time measurement</li> <li>Energy measurement</li> <li>Particle identification</li> <li>Electronics, trigger and data acquisition</li> <li>Detector systems in Particle and Astroparticle Physics</li> </ul> |                   |             |  |  |
| Previous knowledge                     | Experimental Physics V (B.Sc. Physik                                                                                                                                                                                                              | :)                                                                                                                                                                                                                   |                   |             |  |  |
| Workload<br>(hours)                    | Course                                                                                                                                                                                                                                            | Contact hrs                                                                                                                                                                                                          | Self-studies      | Total       |  |  |
| (nours)                                | Lecture and exercises (L+E)                                                                                                                                                                                                                       | 90 h                                                                                                                                                                                                                 | 180 h             | 270 h       |  |  |
| Usability                              | M.Sc. Physics modules: "Advanced Physics 1+2" (PL), "Advanced Physics 3" (SL) or<br>"Elective Subjects" (SL),<br>M.Sc. Applied Physics modules: "Advanced Experimental Physics" (PL), "Applied<br>Physics" (PL or SL) or "Elective Subjects" (SL) |                                                                                                                                                                                                                      |                   |             |  |  |
| Language                               | English                                                                                                                                                                                                                                           |                                                                                                                                                                                                                      |                   |             |  |  |

# 3.1.5. Particle Detectors (9 ECTS)

# 3.2. Advanced Theoretical Physics (9 ECTS credit points)

| <b>Module</b><br>07LE33K-ADV_THEO | Advanced Theo                                                                           | oretical                                                                                                                                                                                                                                                                                                                                                                                                                             | Physics         |            |                             | 9 ECTS         |  |
|-----------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-----------------------------|----------------|--|
| Responsibility                    | Dean of Studies,<br>Lecturers for Theoretica                                            | Dean of Studies,<br>Lecturers for Theoretical Physics                                                                                                                                                                                                                                                                                                                                                                                |                 |            |                             |                |  |
| Courses                           |                                                                                         | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                 | Credit hrs      | ECTS       | Assessment                  | Semester       |  |
|                                   | Advanced<br>Theoretical Physics                                                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4               | 9          | PL: written or<br>oral exam | WiSe +<br>SoSe |  |
|                                   | Advanced<br>Theoretical Physics                                                         | E                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2               | 9          | SL:<br>exercises            | WiSe +<br>SoSe |  |
|                                   | Total:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4+2             | 9          |                             |                |  |
| Required academic<br>assessment   | The final module exam<br>the regular and succes<br>online for the exercises             | ssful parti                                                                                                                                                                                                                                                                                                                                                                                                                          | cipation in the | e exercis  | es. Students hav            | e to register  |  |
| Grading                           | The final grade of the n                                                                | nodule is t                                                                                                                                                                                                                                                                                                                                                                                                                          | he grade of th  | e final ex | am.                         |                |  |
| Qualification<br>objectives       | <ul> <li>Students are famil<br/>of modern researc</li> <li>Students know adv</li> </ul> | <ul> <li>Students obtain advanced knowledge in particular field of theoretical physics.</li> <li>Students are familiar with current problems and research topics in particular fields of modern research in theoretical physics.</li> <li>Students know advanced tools and methods in particular fields.</li> <li>Specific qualification objectives for each lecture are listed in individual course descriptions in 3.3.</li> </ul> |                 |            |                             |                |  |
| Course content                    | A range of advanced of content of each lecture                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | -          | -                           | The specific   |  |
| Workload<br>(hours)               | Course                                                                                  | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contact I       | nrs        | Self-studies                | Total          |  |
| (nours)                           | Advanced<br>Theoretical Physics                                                         | L                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60 h            |            | 180 h                       | 270 h          |  |
|                                   | Advanced<br>Theoretical Physics                                                         | E                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 h            |            | 180 h                       | 270 h          |  |
|                                   | Total:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |            | 180 h                       | 270 h          |  |
| Usability                         | M.Sc. Applied Physics                                                                   | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 1          |                             |                |  |
| Previous knowledge                | Specific prerequisites a                                                                | Specific prerequisites are given in the individual course descriptions.                                                                                                                                                                                                                                                                                                                                                              |                 |            |                             |                |  |
| Language                          | English                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |            |                             |                |  |

| Module No.                         | Lecture                                  | ECTS | Term |      |                |
|------------------------------------|------------------------------------------|------|------|------|----------------|
|                                    |                                          |      | WiSe | SoSe | irregu-<br>Iar |
| 07LE33M-<br>ADV_THEO_QM            | Advanced Quantum Mechanics               | 10   | Х    |      |                |
| 07LE33M-<br>ADV_THEO_COND<br>MAT   | Theoretical Condensed Matter Physics     | 9    |      | х    |                |
| 07LE33M-<br>ADV_THEO_CS            | Classical Complex Systems                | 9    | Х    |      |                |
| 07LE33M-<br>ADV_THEO_OS            | Complex Quantum Systems                  | 9    |      |      | Х              |
| 07LE33M-<br>ADV_THEO_QO            | Theoretical Quantum Optics               | 9    |      |      | Х              |
| 07LE33M-<br>ADV_THEO_COMP-<br>PHYS | Computational Physics: Materials Science | 9    |      | х    |                |

# List of eligible lectures (Module: Advanced Theoretical Physics):

| Module no.<br>07LE33M-AQM   | Advanced Quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Mech                                                                                                                                                           | nanics                                                                                                                                                 |                                                                                                                            | 1                                                                                                                                                                                              | 0 ECTS                                                                                                                              |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Lecturer/s                  | Lecturers for Theoretical Pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nysics                                                                                                                                                           |                                                                                                                                                        |                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                     |
| Course details              | Type Credit ECTS Assessme<br>hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                     |
|                             | Advanced<br>Quantum Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                                                                                                                                | 4                                                                                                                                                      | 10                                                                                                                         | PL: written<br>exam                                                                                                                                                                            | WiSe                                                                                                                                |
|                             | Advanced<br>Quantum Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E                                                                                                                                                                | 3                                                                                                                                                      |                                                                                                                            | SL:<br>exercises                                                                                                                                                                               | WiSe                                                                                                                                |
| Term                        | The course will be offered e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | each WiS                                                                                                                                                         | e.                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                     |
| Qualification<br>objectives | <ul> <li>Students know the fou<br/>problems involving sim</li> <li>Students know the rep<br/>quantum theory. They<br/>sentation theory in ge<br/>and irreducible repres<br/>cients to simple proble</li> <li>Students know the cor<br/>metrize respectively a<br/>methods of Hartree- ar<br/>tems.</li> <li>Students know the fur<br/>apply it to specific time</li> <li>Students know Dirac's</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nple poter<br>presentation<br>have a function<br>neral. The<br>entations<br>mus involve<br>nection be<br>not insymmetric<br>and Hartree<br>adamenta<br>e-depende | ntials.<br>ons of the<br>undamenta<br>ey know th<br>. They are<br>ing angular<br>between sp<br>etrize mult<br>e-Fock and<br>ls of time-<br>ent problem | rotationa<br>Il knowled<br>ne meani<br>e able to<br>r moment<br>bin and st<br>i-particle<br>I apply the<br>depender<br>ns. | I group and their r<br>dge in group theor<br>ng of product rep<br>apply Clebsch-G<br>um and spin in ato<br>atistics. They are<br>states. They can<br>em to simple multi<br>ht perturbation the | relevance for<br>ry and repre-<br>presentations<br>ordon coeffi-<br>omic spectra.<br>able to sym-<br>describe the<br>-particle sys- |
| Course content              | <ul> <li>Scattering theory: scattering amplitude and cross-section, partial wave expansion,<br/>Lippmann-Schwinger equation and Born series.</li> <li>Fundamentals of the representation theory of groups, in particular of the rotation<br/>group SO(3). Tensor product representations and irreducible representations.<br/>Wigner-Eckart theorem. Applications to angular momentum and spin couplings in<br/>atomic, molecular and condensed matter physics.</li> <li>Time-dependent perturbation theory: Dyson-expansion, Fermi's Golden Rule, ex-<br/>amples of application to important time-dependent quantum processes.</li> <li>Many-particle systems: identical particles, spin-statistic theorem, variational prin-<br/>ciples, Hartree and Hartree-Fock approximations.</li> <li>Interaction between radiation and matter. Quantization of the electromagnetic field.<br/>Interaction Hamiltonian, emission and absorption.</li> <li>Relativistic quantum mechanics and quantum field theory; Dirac equation, quanti-<br/>zation of Klein-Gordon and Dirac's equation.</li> </ul> |                                                                                                                                                                  |                                                                                                                                                        |                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                     |
| Previous knowledge          | Contents of lectures Theore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | etical Phy                                                                                                                                                       | sics I-IV (E                                                                                                                                           | 3.Sc. Phy                                                                                                                  | sics)                                                                                                                                                                                          |                                                                                                                                     |

# 3.2.1. Advanced Quantum Mechanics (10 ECTS)

| Workload<br>(hours) | Course                                                                                                                   | Contact hrs | Self-studies | Total |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------|--|--|
|                     | Lecture and exercises<br>(L+E)                                                                                           | 105 h       | 195 h        | 300 h |  |  |
| Usability           | M.Sc. Physics (PL),<br>M.Sc. Applied Physics modules: "Advanced Theoretical Physics" (PL) or "Elective<br>Subjects" (SL) |             |              |       |  |  |
| Language            | English                                                                                                                  |             |              |       |  |  |

| <b>Module no.</b><br>07LE33M-<br>ADV_THEO_CONDMAT | Theoretical Condensed Matter Physics 9 E0                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                 |               |                             |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------|--|--|
| Lecturer/s                                        | Lecturers from Theoretical Condense                                                                                                                                                                                | ed Matter and App                                                                                                                                                                                                                                                                                                                                                                               | blied Physics |                             |  |  |
| Course details                                    | Туре                                                                                                                                                                                                               | Type Credit hrs ECTS Assessment                                                                                                                                                                                                                                                                                                                                                                 |               |                             |  |  |
|                                                   | Lecture and exercises (L+E)                                                                                                                                                                                        | 4+2                                                                                                                                                                                                                                                                                                                                                                                             | 9             | PL: written or<br>oral exam |  |  |
| Term                                              | In general, the course will be offered                                                                                                                                                                             | each SoSe.                                                                                                                                                                                                                                                                                                                                                                                      | ····          |                             |  |  |
| Qualification<br>objectives                       | <ul><li>Physics.</li><li>Students are able to calculate systems based on quantum med</li></ul>                                                                                                                     | <ul> <li>Students are familiar with the relevant theoretical concepts in Condensed Matter Physics.</li> <li>Students are able to calculate physical properties of various condensed matter systems based on quantum mechanics, and appreciate the physical ideas behind these approximation schemes, as well as their limitations.</li> </ul>                                                   |               |                             |  |  |
| Course content                                    | <ul> <li>phonons.</li> <li>Electrons in periodic potentials,<br/>ductors, insulators and semi-cor</li> <li>Electron phonon coupling. BCS</li> </ul>                                                                | <ul> <li>Crystal structures, crystal vibrations, quantization of harmonically coupled lattices, phonons.</li> <li>Electrons in periodic potentials, Bloch waves, band structure. Application to conductors, insulators and semi-conductors.</li> <li>Electron phonon coupling. BCS theory of superconductivity.</li> <li>Spin degrees of freedom. Classical and quantum spin chains.</li> </ul> |               |                             |  |  |
| Previous knowledge                                | Experimental Physics I-IV, Theoretic                                                                                                                                                                               | al Physics I-IV (B                                                                                                                                                                                                                                                                                                                                                                              | .Sc. Physik)  |                             |  |  |
| Workload<br>(hours)                               | Course                                                                                                                                                                                                             | Contact hrs                                                                                                                                                                                                                                                                                                                                                                                     | Self-studies  | Total                       |  |  |
|                                                   | Lecture and exercises (L+E)                                                                                                                                                                                        | 90 h                                                                                                                                                                                                                                                                                                                                                                                            | 180 h         | 270 h                       |  |  |
| Usability                                         | M.Sc. Physics modules: "Advanced Physics 1+2" (PL), "Advanced Physics 3" (SL) or<br>"Elective Subjects" (SL),<br>M.Sc. Applied Physics modules: "Advanced Theoretical Physics" (PL) or "Elective<br>Subjects" (SL) |                                                                                                                                                                                                                                                                                                                                                                                                 |               |                             |  |  |
| Language                                          | English                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                 |               |                             |  |  |

# 3.2.2. Theoretical Condensed Matter Physics (9 ECTS)

| Module no.<br>07LE33M-ADV_THEO_CS | Classical Complex Systems 9 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |      |                          |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|--------------------------|--|--|
| Lecturer/s                        | Lecturers from Theoretical Atomic, Molecular and Optical Sciences<br>or from Theoretical Condensed Matter and Applied Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |      |                          |  |  |
| Course details                    | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Credit hrs | ECTS | Assessment               |  |  |
|                                   | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4+2        | 9    | PL: written or oral exam |  |  |
| Term                              | In general the course will be offered eac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h WiSe.    |      |                          |  |  |
| Qualification<br>objectives       | <ul> <li>Students are familiar with stochastic and deterministic concepts to model complex systems.</li> <li>Students are capable of recognizing and rigorously describing phenomena commonly encountered in complex systems.</li> <li>Students are able to use probabilistic notions to model systems subject to uncertainty about their microscopic states and laws.</li> <li>Students are able to run and interpret Monte Carlo computer simulations as well as to quantify the confidence in results produced by randomized algorithms.</li> <li>Students are able to use basic statistical tools to infer probabilistic statements from empirical observations.</li> </ul> |            |      |                          |  |  |
| Course content                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |      |                          |  |  |

# 3.2.3. Classical Complex Systems (9 ECTS)

| Previous knowledge  | Theoretical Physics I-V     |                                                                                 |              |       |  |  |  |
|---------------------|-----------------------------|---------------------------------------------------------------------------------|--------------|-------|--|--|--|
| Workload<br>(hours) | Course                      | Contact hrs                                                                     | Self-studies | Total |  |  |  |
|                     | Lecture and exercises (L+E) | 90 h                                                                            | 180 h        | 270 h |  |  |  |
| Usability           | "Elective Subjects" (SL),   | M.Sc. Applied Physics modules: "Advanced Theoretical Physics" (PL) or "Elective |              |       |  |  |  |
| Language            | English                     |                                                                                 |              |       |  |  |  |

| Module no.<br>07LE33M-ADV_THEO_OS | Complex Quantum Systems 9 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               |   |                          |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---|--------------------------|--|--|--|
| Lecturer/s                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lecturers from Theoretical Atomic, Molecular and Optical Sciences<br>or from Theoretical Condensed Matter and Applied Physics |   |                          |  |  |  |
| Course details                    | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Type Credit hrs ECTS                                                                                                          |   |                          |  |  |  |
|                                   | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4+2                                                                                                                           | 9 | PL: written or oral exam |  |  |  |
| Term                              | Lecture is offered on an irregular basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |   |                          |  |  |  |
| Qualification<br>objectives       | <ul> <li>The students know the advanced physical concepts and mathematical techniques in the field of complex and open quantum systems;</li> <li>They have the ability to apply these concepts and techniques to the theoretical modelling and analysis of specific complex systems and to derive emergent phenomena in open systems (e.g. macroscopic classicality) from microscopic laws of quantum mechanics (e.g. decoherence).</li> <li>For structural track: The students know how to reason about counter-intuitive aspects of quantum theory using mathematically rigorous notions.</li> </ul>                                                                                                                                                                                           |                                                                                                                               |   |                          |  |  |  |
| Course content                    | <ul> <li>Quantum states: Pure and mixed states, density matrices, quantum state space</li> <li>Composite quantum systems: Tensor product, entangled states, partial trace and reduced density matrix, quantum entropy</li> <li>Open quantum systems: Closed and open systems, dynamical maps, quantum operations, complete positivity and Kraus representation</li> <li>Dynamical semigroups and quantum master equations: Semigroups and generators, quantum Markovian master equations, Lindblad theorem</li> <li>General properties of the master equation: Dynamics of populations and coherences, Pauli master equation, relaxation to equilibrium</li> <li>Decoherence: Destruction of quantum coherence through interaction with an environment, decoherence versus relaxation</li> </ul> |                                                                                                                               |   |                          |  |  |  |
|                                   | <ul> <li>Applied Track:</li> <li>Microscopic theory: System-reservoir models, Born-Markov approximation, microscopic derivation of the master equation.</li> <li>Applications: Quantum theory of the laser, superradiance, quantum transport quantum Boltzmann equation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                               |   |                          |  |  |  |
|                                   | <ul> <li>Structural Track:</li> <li>Uncertainty relations: Joint measurability, uncertainty relations for continuous discrete observables, information-disturbance trade-off</li> <li>Contextuality: Non-Locality, Bell's Theorem, Marginals</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |   |                          |  |  |  |
| Previous knowledge                | Theoretical Physics IV (Quantum Mechanics, B.Sc. Physik) and Advanced Quantum Mechanics (M.Sc. Physics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                               |   |                          |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |   |                          |  |  |  |

# 3.2.4. Complex Quantum Systems (9 ECTS)

| Workload<br>(hours) | Course                                                                                                                                                                                                             | Contact hrs | Self-studies | Total |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------|--|--|
| (10013)             | Lecture and exercises (L+E)                                                                                                                                                                                        | 90 h        | 180 h        | 270 h |  |  |
| Usability           | M.Sc. Physics modules: "Advanced Physics 1+2" (PL), "Advanced Physics 3" (SL) or<br>"Elective Subjects" (SL),<br>M.Sc. Applied Physics modules: "Advanced Theoretical Physics" (PL) or "Elective<br>Subjects" (SL) |             |              |       |  |  |
| Language            | English                                                                                                                                                                                                            |             |              |       |  |  |

| Module no.<br>07LE33M-<br>ADV_THEO_QO | Theoretical Quantum Optics 9 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                          |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|--|--|
| Lecturer/s                            | Lecturers from Theoretical Atomic, M                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lecturers from Theoretical Atomic, Molecular and Optical Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                          |  |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Credit hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ECTS         | Assessment               |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9            | PL: written or oral exam |  |  |
| Term                                  | Lecture is offered on an irregular bas                                                                                                                                                                                                                                                                                                                                                                                                                                       | is.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                          |  |  |
| Qualification<br>objectives           | <ul> <li>Students are able to interpret the nonically conjugate variables</li> <li>Students are able to distinguish field, and to perform the classica</li> <li>Students are able to infer the querelation functions</li> <li>Students are able to describe the systems</li> <li>Students can give a semiclassica</li> <li>Students are familiar with a se probe generic quantum properties</li> <li>Quantization of the radiation field</li> <li>Coherent states</li> </ul> | <ul> <li>Students are able to distinguish classical from quantum features of the quantized field, and to perform the classical limit</li> <li>Students are able to infer the quantum state of the light field from multi-point correlation functions</li> <li>Students are able to describe the quantum state of strongly coupled light-matter systems</li> <li>Students can give a semiclassical description of light-matter systems</li> <li>Students are familiar with a selection of paradigmatic experimental settings to probe generic quantum properties of the light field</li> <li>Quantization of the radiation field</li> <li>Coherent states</li> <li>Phase space representation of quantum states</li> </ul> |              |                          |  |  |
|                                       | <ul> <li>Floquet theory</li> <li>Special topics, e.g. micromaser theory, elements of entanglement theory, laser theory, master equations, coherent control</li> <li>Light-matter interaction</li> </ul>                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                          |  |  |
| Previous knowledge                    | Experimental Physics I-IV, Theoretica                                                                                                                                                                                                                                                                                                                                                                                                                                        | al Physics I-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I            |                          |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Self-studies | Total                    |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180 h        | 270 h                    |  |  |
| Usability                             | M.Sc. Physics modules: "Advanced Physics 1+2" (PL), "Advanced Physics 3" (SL) or<br>"Elective Subjects" (SL),<br>M.Sc. Applied Physics modules: "Advanced Theoretical Physics" (PL) or "Elective<br>Subjects" (SL)                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                          |  |  |
| Language                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                          |  |  |

# 3.2.5. Quantum Optics (9 ECTS)

| Module no.<br>07LE33M-<br>ADV_THEO_COMPPHYS | Computational Physics: Materials Science 9 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |              |                          |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--------------------------|--|--|
| Lecturer/s                                  | Lecturers from Computational Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |              |                          |  |  |
| Course details                              | Type Credit hrs ECTS Assessr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |              |                          |  |  |
|                                             | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4+2            | 9            | PL: written or oral exam |  |  |
| Term                                        | The lecture is offered regularly in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | summer semeste | er.          |                          |  |  |
| Qualification<br>objectives                 | <ul> <li>Students have understood the basic Hamiltonian of CMS</li> <li>Students are familiar with the various approximations that lead to different methods in CMS: Born-Oppenheimer approximation, classical approximation for the nuclei, local density approximation, tight-binding, semi-empirical interatomic potentials, coarse grained models, hydrodynamic limit</li> <li>Students have a basic knowledge of density functional theory.</li> <li>Students can set up simple molecular dynamics calculations.</li> <li>Students are familiar with the different types of Born-Oppenheimer surfaces for the different types of interatomic binding.</li> <li>Students are familiar with extended molecular dynamics methods.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |              |                          |  |  |
| Course content                              | This lecture provides an introduction into basic concepts of atomistic computational materials science. The computational tools for different time and length scales will be introduced and it will be discussed how these tools can be combined in order to solve physical problems extending over too many scales for one single method alone. We will start with a brief introduction to density functional theory and more approximate methods such as tight binding. Quantum derived forces can be extracted from these methods and the short term dynamics of small nanosystems can be studied. For the simulation of larger systems and longer time scales, classical interatomic potentials are required. The students will become familiar with some examples for the different types of interatomic potentials: e.g. Lennard-Jones, Born-Mayer, Embedded-Atom, Bond-Order-potentials as well as bead-spring potentials for polymers. A brief introduction into the basic methodology of micro-canonical and thermostated molecular dynamics simulations will be given. The lecture is accompanied by a hands-on programming course. Classical molecular dynamics simulations will be used to study metallic and covalently bonded materials. |                |              |                          |  |  |
| Previous knowledge                          | Basic knowledge in classical and qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ntum mechanics |              |                          |  |  |
| Workload<br>(hours)                         | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Contact hrs    | Self-studies | Total                    |  |  |
|                                             | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90 h           | 180 h        | 270 h                    |  |  |
| Usability                                   | M.Sc. Physics modules: "Advanced Physics 1+2" (PL), "Advanced Physics 3" (SL) or<br>"Elective Subjects" (SL),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |              |                          |  |  |

# 3.2.6. Computational Physics: Materials Science (9 ECTS)

|          | M.Sc. Applied Physics modules: "Advanced Theoretical Physics" (PL), "Applied Physics" (PL or SL), "Elective Subjects" (SL) |
|----------|----------------------------------------------------------------------------------------------------------------------------|
| Language | English                                                                                                                    |

# 3.3. Applied Physics (18 ECTS credit points)

| Module<br>07LE33K-APHYS     | Applied Phys                                                                        | ics                                                                                                                                                                                                                                                                                                               |                                     |            |                                                                              | 18 ECTS        |  |
|-----------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|------------------------------------------------------------------------------|----------------|--|
| Responsibility              | Dean of Studies,<br>Lecturers of the Institute of Physics and associated Institutes |                                                                                                                                                                                                                                                                                                                   |                                     |            |                                                                              |                |  |
| Courses                     |                                                                                     | Semester                                                                                                                                                                                                                                                                                                          |                                     |            |                                                                              |                |  |
|                             | Applied Physics<br>lectures<br>by own choice                                        | L+E                                                                                                                                                                                                                                                                                                               | According<br>to selected<br>courses | 18         | SL: written or oral<br>exam (9 ECTS)<br>PL: written or oral<br>exam (9 ECTS) | WiSe +<br>SoSe |  |
|                             | Total:                                                                              |                                                                                                                                                                                                                                                                                                                   |                                     | 18         |                                                                              |                |  |
| assessment                  | For the graded ass<br>credit points, where<br>exams according to                    | in total from the list of Applied Physics lectures given below.<br>For the graded assessment (PL), students select lectures containing at least 9 ECTS credit points, where they attend a written or oral exam. Students have to register for the exams according to the announcements of the examination office. |                                     |            |                                                                              |                |  |
| Grading                     | The final grade of the exams.                                                       | he module                                                                                                                                                                                                                                                                                                         | is the ECIS-                        | weighted   | mean of the grades of                                                        | of the graded  |  |
| Qualification<br>objectives | The qualification o vidual course desc                                              |                                                                                                                                                                                                                                                                                                                   | subject to the                      | e selected | I course and are liste                                                       | d in the indi- |  |
| Course content              |                                                                                     | -                                                                                                                                                                                                                                                                                                                 |                                     |            | egular or irregular ba<br>Ial course description                             | -              |  |
| Workload<br>(hours)         | Course                                                                              |                                                                                                                                                                                                                                                                                                                   | Conta                               | ct hrs     | Self-studies                                                                 | Total          |  |
| (                           | Applied Physics led                                                                 | tures                                                                                                                                                                                                                                                                                                             | sul                                 | bject to s | elected lectures                                                             | 540 h          |  |
|                             | Total:                                                                              |                                                                                                                                                                                                                                                                                                                   |                                     |            |                                                                              | 540 h          |  |
| Usability                   | M.Sc. Applied Phys                                                                  | sics                                                                                                                                                                                                                                                                                                              |                                     |            |                                                                              |                |  |
| Previous knowledge          | Specific prerequisit                                                                | es are giv                                                                                                                                                                                                                                                                                                        | en in the indivi                    | idual cou  | rse descriptions.                                                            |                |  |
| Language                    | English                                                                             | English                                                                                                                                                                                                                                                                                                           |                                     |            |                                                                              |                |  |

| Module no.            | Lecture                                                                | ECTS | Term |      |                |
|-----------------------|------------------------------------------------------------------------|------|------|------|----------------|
|                       |                                                                        |      | WiSe | SoSe | irregu-<br>lar |
| Optical Tech          | nologies:                                                              |      |      |      |                |
| 07LE33M-<br>PHOTMIC   | Photonic Microscopy                                                    | 7    | Х    |      |                |
| 11LE50MO-<br>5219SL   | Optical Trapping and Particle-Tracking                                 | 7    |      | х    |                |
| 11LE50MO-<br>5221SL   | Wave Optics                                                            | 7    |      | х    |                |
| 07LE33M-<br>LSPEC     | Laser-based Spectroscopy and Analytical Methods                        | 5    |      | Х    |                |
| 07LE33M-<br>PHOTOVOLT | Photovoltaic Energy Conversion                                         | 5    |      | Х    |                |
| 11LE68MO-<br>4103     | Multi-junction solar cell technology and concentrator photovolatic     | 3    | Х    |      |                |
| 07LE33M-<br>SOLPHYS   | Solar Physics                                                          | 5    | (X)  |      |                |
| 07LE33M-<br>ASTRINST  | Modern Astronomical Instrumentation                                    | 5    | (X)  |      |                |
| Physics in L          | ife Science & Medical Physics:                                         |      |      |      |                |
| 07LE33M-<br>DYNBIO    | Dynamic Systems in Biology                                             | 7    |      |      | х              |
| 07LE33M-<br>MOLDYN    | Molecular Dynamics & Spectroscopy                                      | 7    |      |      | Х              |
| 07LE33M-<br>NANOBIO   | Physics of Nano-Biosystems                                             | 5    |      | Х    |                |
| 07LE33M-<br>PHYSMED   | Physics of Medical Imaging Methods                                     | 5    | Х    |      |                |
| 07LE33M-<br>CARDI     | Biophysics of cardiac function and signals                             | 5    | Х    |      |                |
| 07LE33M-<br>Neuro     | Computational Neuroscience: Models of Neurons and Networks             | 7    |      | х    |                |
| 07LE33M-<br>Neuro     | Computational Neuroscience: Simulation of Biological Neuronal Networks | 5    |      | х    |                |
| Interactive a         | nd Adaptive Materials:                                                 |      |      | I    | 1              |
| 07LE33M-<br>POL       | Experimental Polymer Physics                                           | 9    | Х    |      |                |
| 07LE33M-<br>SELFAS    | Physical Processes of Self-Assembly and Pattern<br>Formation           | 7    |      | х    |                |
| 07LE33M-<br>HL        | Fundamentals of Semiconductors & Optoelectronics                       | 5    | Х    |      |                |
| 07LE33M-<br>HLBAU     | Semiconductor Devices                                                  | 5    |      | х    |                |
| 11LE50V-<br>5115      | Mechanical Properties and Degradation Mechanisms                       | 3    |      | х    |                |
| 07LE33M-<br>MODMAT    | Theory and Modeling of Materials                                       | 5    | Х    | х    |                |
| 07LE33M-<br>QTRANS    | Quantum Transport                                                      | 7    |      | х    |                |
| 10LE09V-<br>ID121115  | Crystal Growth Technology                                              | 3    | Х    |      |                |

# List of eligible lectures (Module: Applied Physics):

| Course No.           | Lecture                                          | ECTS | Term |      |                |
|----------------------|--------------------------------------------------|------|------|------|----------------|
|                      |                                                  |      | WiSe | SoSe | irregu-<br>lar |
| Applied Phy          | sics Methods:                                    |      |      |      |                |
| 07LE33M-<br>LTPHYS   | Low Temperature Physics                          | 9    |      |      | Х              |
| 07LE33M-<br>STATNUM  | Statistics and Numerics                          | 7    |      |      | Х              |
| 07LE33M-<br>COMPPHYS | Computational Physics: Density Functional Theory | 7    |      |      | Х              |
| 11LE50MO-<br>2080    | Modeling and System Identification               | 6    | Х    |      |                |

| Module no.<br>07LE33M-PHOTMIC | Photonic Microscopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                           | 7 ECTS                                                                                                     |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| Lecturer/s                    | Prof. Dr. Alexander Rohrbach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prof. Dr. Alexander Rohrbach                                                                                                                                                                                        |                                                                                                           |                                                                                                            |  |  |  |
| Course details                | Type Credit hrs ECTS Asses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                           |                                                                                                            |  |  |  |
|                               | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3+2                                                                                                                                                                                                                 | 7                                                                                                         | SL or PL                                                                                                   |  |  |  |
| Term                          | The lecture is offered in the winter semest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ter                                                                                                                                                                                                                 | 1                                                                                                         | I                                                                                                          |  |  |  |
| Qualification<br>objectives   | The student should learn how to guide light through optical systems, how optical infor-<br>mation can be described very advantageously by three-dimensional transfer functions<br>in Fourier space, how phase information can be transformed to amplitude information<br>to generate image contrast. Furthermore one should experience that wave diffraction<br>is not reducing the information and how to circumvent the optical resolution limit. The<br>student should learn to distinguish between coherent and incoherent imaging, learn<br>about modern techniques using self-reconstructing laser beams, two photon excitation,<br>fluorophores depletion through stimulated emission (STED) or multi-wave mixing by<br>coherent anti-Stokes Raman scattering (CPLS).<br>The tutorials help the student to get a more in depth and thorough under-standing of<br>the lecture. Here, a special focus is put on the transfer of knowledge obtained in the<br>lecture. To achieve this, the students should pre-pare weekly exercise and present<br>them during the tutorial. Only difficult exercises are presented by the tutors. |                                                                                                                                                                                                                     |                                                                                                           |                                                                                                            |  |  |  |
| Course content                | <ul> <li>The scientific breakthroughs and technologimaging have experienced a real revolution Nobel-Prize for super-resolution microscoon This lecture gives an overview about physion photonic imaging.</li> <li>Topics: <ol> <li>Microscopy: History, Presence and Future Wave- and Fourier-Optics</li> <li>Three-dimensional optical imaging and</li> <li>Contrast enhancement by Fourier-filteri</li> <li>Fluorescence – Basics and techniques</li> <li>Point scanning and confocal microscop</li> <li>Microscopy with self-reconstructing beat</li> <li>Optical tomography</li> <li>Nearfield and Evanescent Field Microscop</li> <li>Super-resolution using structured illument</li> <li>Multi-Photon-Microscopy</li> <li>Super resolution imaging by switching</li> </ol> </li> <li>The lecture has an ongoing emphasis on a mixture of fundamental physics, compact of ples and illustrations. The lecture aims to field, which will influence the fields of nanoparative sectors.</li> </ul>                                                                                                                                   | n over the last 10-<br>py could be seen<br>cal principles and<br>ure<br>information transf<br>ng<br>y<br>ams<br>copy<br>hination<br>single molecules<br>applications, but r<br>mathematical des<br>encompass the cu | 15 years. I<br>as a logica<br>techniques<br>er<br>er<br>er<br>nevertheles<br>criptions ar<br>urrent state | Hence, the 2014<br>al consequence.<br>s used in modern<br>s presents a<br>nd many exam-<br>of a scientific |  |  |  |

# 3.3.1. Photonic Microscopy (7 ECTS)

| Literature                            | <ul> <li>Accompanying to the lecture printed lecture notes with defined gaps (white boxes) are distributed.</li> <li>Optical Microscopy: <ul> <li>Jerome Mertz: Introduction to Optical Microscopy, Roberts &amp; Co Publ. 2009</li> <li>U. Kubitschek, Fluorescence Microscopy, Wiley-Blackwell 2013</li> <li>Min Gu, Advanced optical imaging theory, Springer - Berlin, 1999</li> <li>James B. Pawley: Handbook of Biological Confocal Microscopy , Springer - Berlin, 2006</li> <li>Herbert Gross: Handbook of optical systems, Vol 2: Physical image formation, Wiley VCH 2005</li> </ul> </li> <li>General Optics: <ul> <li>Hecht, E. (2002). Optics, Addison Wesley.</li> <li>Saleh, B. E. A. and M. C. Teich (1991). Fundamentals of Photonics, Wiley &amp; Sons, Inc.</li> <li>Herbert Gross: Handbook of optical systems, Vol 1-5</li> </ul> </li> </ul> |      |       |       |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|--|--|
| Preliminaries /<br>Previous knowledge |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |       |  |  |
| Final Exam                            | Written or oral exam (120 min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |       |       |  |  |
| Workload<br>(hours)                   | Course Contact hrs Self-studies Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |       |  |  |
| (                                     | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75 h | 135 h | 210 h |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |       |  |  |
| Language                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |       |  |  |

| Module no.<br>11LE50MO-5219SL | Optical Trapping and Particle-Tracking 7 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |             |                  |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|------------------|--|--|--|
| Lecturer/s                    | Prof. Dr. Alexander Rohrbach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Prof. Dr. Alexander Rohrbach |             |                  |  |  |  |
| Course details                | Type Credit hrs ECTS Assessm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |             |                  |  |  |  |
|                               | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3+2                          | 7           | SL or PL         |  |  |  |
| Term                          | The lecture is offered in the summer seme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ester                        | 1           |                  |  |  |  |
| Qualification<br>objectives   | Optical traps and optical micro-manipulation techniques do have the poten-tial to play<br>a key role in future micro- and nano-systems in conjunction with the life sciences. In<br>this lecture the students should learn what is doable with optical forces, where physical<br>limits are and what is limited by nowadays technology. Besides fascinating fundamental<br>research various applications related to biology or fluctuation based systems are pre-<br>sented. The lecture is manifold and teaches basics in optics, statistical physics and<br>biolo-gy/biophysics.<br>The tutorials help the students to get a more in depth and thorough under-standing of<br>the lecture. Here, a special focus is put on the transfer of knowledge obtained in the<br>lecture. To achieve this the students should pre-pare weekly exercise and present them<br>during the tutorial. Only difficult exer-cises are presented by the tutors. |                              |             |                  |  |  |  |
| Course content                | <ol> <li>Introduction</li> <li>Light - Information carrier and actor</li> <li>About microscopy</li> <li>Light scattering</li> <li>Optical forces</li> <li>Tracking beyond the uncertainty</li> <li>Brownian motion and calibration technic</li> <li>Photonic force microscopy</li> <li>Applications in cell biophysics</li> <li>Time-multiplexing and holographics op</li> <li>Applications in microsystems technolo</li> <li>Applications in nanotechnology</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | otical traps                 |             |                  |  |  |  |
| Literature                    | Accompanying to the lecture printed lecture<br>distributed.<br>General optics:<br>• Hecht, E. (2002). Optics, Addison We<br>• Saleh, B. E. A. and M. C. Teich (1991<br>Inc.<br>Nano optics<br>• L. Novotny & B. Hecht, E. (2002). Print<br>Statistical physics and thermodynamics<br>• Standard text books                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | esley.<br>). Fundamentals c  | of Photonic | s, Wiley & Sons, |  |  |  |

# 3.3.2. Optical Trapping and Particle-Tracking (7 ECTS)

|                                       | <ul> <li>Chemical and biological forces and interactions</li> <li>Leckband, D. &amp; J. Israelachvili (2001). "Intermolecular forces in biology." Quart.<br/>Rev. Biophys 34: 105–267</li> </ul> |             |              |       |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------|--|--|
| Preliminaries /<br>Previous knowledge |                                                                                                                                                                                                  |             |              |       |  |  |
| Final Exam                            | Written or oral exam (120 min)                                                                                                                                                                   |             |              |       |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                           | Contact hrs | Self-studies | Total |  |  |
| (nould)                               | Lecture and exercises (L+E)                                                                                                                                                                      | 75 h        | 135 h        | 210 h |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                      |             |              |       |  |  |
| Language                              | English                                                                                                                                                                                          |             |              |       |  |  |

#### 3.3.3. Wave Optics (7 ECTS)

| Lecture<br>11LE50MO-5221S   | Wave Optics   7 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |      |            |  |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|------------|--|--|
| Lecturer/s                  | Prof. Dr. Alexander Rohrbach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |      |            |  |  |
| Course details              | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Credit hrs | ECTS | Assessment |  |  |
|                             | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3+2        | 7    | SL or PL   |  |  |
| Term                        | The lecture is offered in the summer seme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ester      |      |            |  |  |
| Qualification<br>objectives | The goal of this lecture is to teach the students how light interacts with small structures<br>and how optical systems guide light. The students will start at Maxwell's equations and<br>move on to the description of light as photon or wave, depending on the given problem.<br>Furthermore, the close connection between spatial and temporal coherence, interfer-<br>ence and holography is demonstrated. The last chapter teaches concepts of linear and<br>non-linear light scattering, as well as the most important plasmonic effects. In total, the<br>students learn how to shape light in three dimensions and how optical problems that<br>arise in research and development are solved. |            |      |            |  |  |
| Course content              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |      |            |  |  |

| Literature<br>Preliminaries /<br>Previous knowledge<br>Final Exam | 6.5. Fluorescing quantum dots<br>6.6. Surface Plasmons and Particle Plasmons<br>Accompanying to the lecture printed lecture notes with defined gaps (white boxes) are<br>distributed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | <ul> <li>Photonics. A big emphasis is put on the description of surface plasmons and particle plasmons, where light can be extremely confined.</li> <li>1. Introduction <ol> <li>Introduction</li> <li>Introduction</li> </ol> </li> <li>Introduction</li> <li>Introduction</li> <li>Introduction</li> <li>A bit of history</li> <li>From Electromagnetic Theory to Optics <ol> <li>If maxwell-equations</li> <li>The change of Light in Matter</li> <li>Wave equation and Helmholtz equation</li> <li>Wave equation and Helmholtz equation</li> <li>Wave equation and Helmholtz equation</li> <li>Introduction</li> <li>Inter Optical Systems</li> <li>Inter Optical Systems</li> <li>Inter Optical Systems</li> <li>Inter Optical Intervention</li> <li>Propagation and Diffraction</li> <li>Praxial light Propagation and Diffraction</li> <li>Praxial light Propagation and Diffraction</li> <li>Evanescent waves</li> <li>Diffraction at thin Phase and Amplitude Objects</li> <li>Light Propagation in inhomogeneous Media</li> <li>Diffraction at gratings</li> <li>Acousto-Optics</li> <li>Spatial Light Modulators</li> <li>Adaptive Optics and Phase Conjugation</li> <li>Interference, coherence and holography</li> <li>Some Basics</li> <li>Interferemetry</li> <li>Foundations of Coherence Theory</li> <li>Principles of Holography</li> <li>Light Scattering and Plasmonics</li> <li>Secattering and Plasmonics</li> <li>Secattering and Plasmonics</li> <li>Fourascattering and Plasmonics</li> <li>F</li></ol></li></ul> |
|                                                                   | 6. Light Scattering and Plasmonics<br>The interaction of light with matter is based on particle scattering: we discuss the theo-<br>retical concepts of light scattering on the background of Fourier theory. We expend<br>these approaches to photon diffusion, nonlinear optics, fluorescence and Raman scat-<br>tering or scattering at semiconductor quantum dots - which are all hot topics in modern<br>Photonics. A bia emphasis is put on the description of surface plasmons and particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Workload<br>(hours) | Course                                                                                                                      | Contact hrs | Self-studies | Total |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------|--|--|
| (10010)             | Lecture and exercises (L+E)                                                                                                 | 75 h        | 135 h        | 210 h |  |  |
| Usability           | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL) |             |              |       |  |  |
| Language            | English                                                                                                                     |             |              |       |  |  |

| Module no.<br>07LE33M-LSPEC           | Laser-based Spectroscopy and Analytical Methods<br>5 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                          |      |            |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|--|--|
| Lecturer/s                            | PD Dr. Frank Kühnemann (Fraunhofer IPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M)                                                                                                                                                                       |      |            |  |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Credit hrs                                                                                                                                                               | ECTS | Assessment |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2+1                                                                                                                                                                      | 5    | SL or PL   |  |  |
| Term                                  | The lecture is offered in the summer seme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ester                                                                                                                                                                    | 1    |            |  |  |
| Qualification<br>objectives           | <ul> <li>At the end of the course, the students</li> <li>Will have knowledge about laser-based spectroscopic methods, particularly with respect to analytical applications.</li> <li>Will understand the physical principles of tuneable laser operation.</li> <li>Will be enabled to evaluate the fundamental and practical limitations of detection techniques.</li> <li>Will have insight into development processes necessary to transfer a scientific method into a practical tool for industrial environments.</li> <li>Will be trained in the preparation and presentation of scientific talks.</li> </ul> |                                                                                                                                                                          |      |            |  |  |
| Course content                        | <ul> <li>medicine, or environment. The current counterrogate the spectral "fingerprints" of a poses. Typical examples are air quality medicate the following topics</li> <li>Infrared molecular spectra</li> <li>Tuneable lasers</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Infrared molecular spectra</li> <li>Tuneable lasers</li> <li>Spectroscopic techniques (absorption, photoacoustic spectroscopy, cavity-based methods)</li> </ul> |      |            |  |  |
|                                       | The <b>seminar</b> talks in the second block will focus on the application of different spectro<br>scopic methods for analytical tasks. At the start of the course, students will choose from<br>a list of provided topics to prepare a talk and a short written summary. The preparation<br>will be supported by topical literature and discussion sessions with the course staff.<br>Duration of the talks will be appr. 30 minutes, followed by a discussion of content and<br>presentation style.                                                                                                             |                                                                                                                                                                          |      |            |  |  |
| Literature                            | <ul><li>lecture script</li><li>recommended literature will be annot</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | unced in the lectur                                                                                                                                                      | re   |            |  |  |
| Preliminaries /<br>Previous knowledge | Advanced Optics and Lasers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                          |      |            |  |  |
| Final Exam                            | Oral (graded seminar talk) and written (talk summary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                          |      |            |  |  |

#### 3.3.4. Laser-based Spectroscopy and Analytical Methods (5 ECTS)

| Workload<br>(hours) | Course                                                                                                                      | Contact hrs | Self-studies | Total |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------|--|--|
| (10010)             | Lecture and exercises (L+E)                                                                                                 | 45 h        | 105 h        | 150 h |  |  |
| Usability           | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL) |             |              |       |  |  |
| Language            | English                                                                                                                     |             |              |       |  |  |

| Module no.<br>07LE33M- PHOTOVOLT      | Photovoltaic Energy Conversion 5 EC                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |               |             |            |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-------------|------------|
| Lecturer/s                            | Dr. Uli Würfel (Fraunhofer ISE)                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |               |             |            |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | с            | redit hrs     | ECTS        | Assessment |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 2+1           | 5           | SL or PL   |
| Term                                  | The lecture is offered in the summer                                                                                                                                                                                                                                                                                                                                                                                                                                                     | semester     |               |             |            |
| Qualification<br>objectives           | <ul> <li>Students have a profound understanding of the working principles of solar cells and are thus able to apply these principles to different kinds of solar cell configurations</li> <li>Students are familiar with state of the art solar cells, the processes limiting their conversion efficiency, how these factors can be identified and if they could (in principle) be overcome</li> </ul>                                                                                   |              |               |             |            |
| Course content                        | <ul> <li>Fundamentals of semiconductors, intrinsic and extrinsic, Fermi-Dirac statistics, bands</li> <li>Generation, recombination and transport of charge carriers</li> <li>Lifetime, diffusion length, pn-junction, ideal solar cell</li> <li>Real solar cell structures, carrier selectivity &amp; semi-permeable membranes</li> <li>Characterisation methods</li> <li>Overview about different PV technologies: Si-based, thin film, Organic, Perovskite, Concentrator-PV</li> </ul> |              |               |             |            |
| Literature                            | <ul> <li>lecture script</li> <li>P. Würfel, Physics of Solar Cell</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             | s, 2nd editi | on 2009, Wi   | ley VCH     |            |
| Preliminaries /<br>Previous knowledge | Basic knowledge of semiconductor p                                                                                                                                                                                                                                                                                                                                                                                                                                                       | physics is h | elpful but no | ot mandator | у          |
| Final Exam                            | Written exam (120 min) or oral exam                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n (30 min)   |               |             |            |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contact      | hrs Sel       | f-studies   | Total      |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45 h         | 1             | 105 h       | 150 h      |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                              |              |               |             |            |
| Language                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |               |             |            |

### 3.3.5. Photovoltaic Energy Conversion (5 ECTS)

| <b>Module no.</b><br>11LE68MO-4103    | Multi-junction solar cell technologyand concentrator photovolatic3 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                             |          |                                   |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------|-----------------------------------|
| Lecturer/s                            | Prof. Dr. Andreas Bett (Fraunhofer I                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SE)                                                          |                             |          |                                   |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Credit I                                                     | nrs                         | ECTS     | Assessment                        |
|                                       | Lecture and exercises (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                            |                             | 3        | SL                                |
| Term                                  | The lecture is offered in the winter se                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emester                                                      | ·                           |          |                                   |
| Qualification<br>objectives           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                             |          |                                   |
| Course content                        | <ul> <li>multi-junction solar cell approach to increase the sunlight conversion efficiency, different solar cell architectures</li> <li>introduction III-V materials, adjustment of band-gap, growth techniques</li> <li>methods for charaterisation of III-V materials and multi-junction solar cells</li> <li>PV concentrator technology: low and high concentration</li> <li>componentes of CPV systems: optics, cells, manufacturing</li> <li>CPV system analysis including an economical evalution</li> </ul> |                                                              |                             |          |                                   |
| Literature                            | <ul> <li>"Solar Cells and Their Application</li> <li>"Advanced Concetps in Photov<br/>Society of Chemistry, 2014;</li> <li>"Next Generation Photovoltaics<br/>Lopez, Springer Series in Optic</li> <li>"Concentrator Phtovoltaics", A Intical Sciences, 2011</li> </ul>                                                                                                                                                                                                                                            | oltaics", AJ Nozik<br>s", AB Cristobal I<br>al Sciences 165, | k, G. Co<br>Lopez,<br>2012, | A. Marti | lC Beard, Royal<br>√ega, A. Luque |
| Preliminaries /<br>Previous knowledge | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                             |          |                                   |
| Final Exam                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                             |          |                                   |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contact hrs                                                  | Self-                       | studies  | Total                             |
| (                                     | Lecture and exercises (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 h                                                         | 6                           | 60 h     | 90 h                              |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                             |          |                                   |
| Language                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |                             |          |                                   |

#### 3.3.6. Multi-junction solar cell technology and concentrator photovolatic (3 ECTS)

#### 3.3.7. Solar Physics (5 ECTS)

| Module no.<br>07LE33M-SOLPHYS         | Solar Physics 5 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                |                |                       |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|--|--|
| Lecturer/s                            | Prof. Dr. Oskar von der Lühe (Kiepe                                                                                                                                                                                                                                                                                                                                                                                                                          | nheuer-Inst. for S                                                                                                                                                                             | Solar Physics, | KIS)                  |  |  |
| Course details                        | Examination                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Credit I                                                                                                                                                                                       | nrs ECT        | S Assessment          |  |  |
|                                       | Lecture and exercises (L)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2+1                                                                                                                                                                                            | 5              | SL or PL              |  |  |
| Term                                  | The lecture is offered every second                                                                                                                                                                                                                                                                                                                                                                                                                          | winter semester.                                                                                                                                                                               |                |                       |  |  |
| Qualification<br>objectives           | <ul> <li>Students obtain advanced knowledge about the Sun as a template star and as a complex physical system. Students also obtain knowledge about modern tools to research the Sun and their physical basis.</li> <li>Students understand the role of the Sun as the central component of the Solar system, its interaction with the heliosphere, and its impact on the near-Earth environment, the Earth's climate and on modern civilization.</li> </ul> |                                                                                                                                                                                                |                |                       |  |  |
| Course content                        | <ul> <li>Internal structure of the Sun</li> <li>Solar rotation, convection and r</li> <li>The solar atmosphere</li> <li>Chromosphere, corona and the</li> </ul>                                                                                                                                                                                                                                                                                              | <ul> <li>Solar rotation, convection and magnetism</li> <li>The solar atmosphere</li> <li>Chromosphere, corona and the solar wind</li> <li>Sun – Earth interaction and space weather</li> </ul> |                |                       |  |  |
| Literature                            | <ul> <li>M. Stix, The Sun – An Introduct</li> <li>P. Foukal, Solar Astrophysics (3)</li> <li>Lecture Script (through ILIAS)</li> </ul>                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                | inger          |                       |  |  |
| Preliminaries /<br>Previous knowledge | Experimental Physics I – IV. Comple bachelor course) is highly recommendation                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | ctory course o | on astrophysics (e.g. |  |  |
| Final Exam                            | Regular participation in exercises (S<br>Written (120 min) or oral (30 min) ex                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                                                                                                                              |                |                       |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contact hrs                                                                                                                                                                                    | Self-studi     | es Total              |  |  |
| (1.5415)                              | Lecture and exercises (L) 45 h 105 h 150 h                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                |                |                       |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                |                |                       |  |  |
| Language                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |                |                       |  |  |

| <b>Module no.</b><br>07LE33M-ASTRINST | Modern Astronomical Instrumentation 5 ECTS                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                  |                   |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|--|--|--|
| Lecturer/s                            | Prof. Dr. Oskar von der Lühe (Kiepe                                                                                                                                                                                  | nheuer-Inst. for S                                                                                                                                                                                                                                                                                                                 | olar Physics, KI | S)                |  |  |  |
| Course details                        | Examination                                                                                                                                                                                                          | Credit h                                                                                                                                                                                                                                                                                                                           | ers ECTS         | Assessment        |  |  |  |
|                                       | Lecture and exercises (L)                                                                                                                                                                                            | Lecture and exercises (L) 2+1 5 SI                                                                                                                                                                                                                                                                                                 |                  |                   |  |  |  |
| Term                                  | The lecture is offered every second                                                                                                                                                                                  | winter semester.                                                                                                                                                                                                                                                                                                                   | I                |                   |  |  |  |
| Qualification<br>objectives           | <ul><li>used for astronomy to observe to waves</li><li>Students understand the design</li></ul>                                                                                                                      | <ul> <li>Students obtain an overview of observing facilities and instruments in which are used for astronomy to observe the e.m. spectrum, astroparticles and gravitational waves</li> <li>Students understand the design principles of optical instruments in general and obtain an introduction to modern lens design</li> </ul> |                  |                   |  |  |  |
| Course content                        | <ul> <li>Design and construction of<br/>trum of e. m. waves on the g</li> <li>Post-focus instrumentation f</li> <li>Spectroscopy and polarimet</li> <li>Detectors for astronomy</li> <li>Radio telescopes</li> </ul> |                                                                                                                                                                                                                                                                                                                                    |                  |                   |  |  |  |
| Literature                            | <ul> <li>P. Léna, Observational Astro</li> <li>Landolt - Börnstein Group V</li> <li>Lecture Script (through ILIAS)</li> </ul>                                                                                        | I Vol. 4 Astronor                                                                                                                                                                                                                                                                                                                  |                  |                   |  |  |  |
| Preliminaries /<br>Previous knowledge | Experimental Physics I – IV. Comple<br>bachelor course) is highly recommen                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    | tory course on a | strophysics (e.g. |  |  |  |
| Final Exam                            | Regular participation in exercises (S<br>Written (120 min) or oral (30 min) ex                                                                                                                                       | ,                                                                                                                                                                                                                                                                                                                                  |                  |                   |  |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                               | Contact hrs                                                                                                                                                                                                                                                                                                                        | Self-studies     | Total             |  |  |  |
|                                       | Lecture and exercises (L) 45 h 105 h 150 h                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    |                  |                   |  |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (SL) or "Elective Subjects" (SL)                                                                                                |                                                                                                                                                                                                                                                                                                                                    |                  |                   |  |  |  |
| Language                              | English                                                                                                                                                                                                              | English                                                                                                                                                                                                                                                                                                                            |                  |                   |  |  |  |

#### 3.3.8. Modern Astronomical Instrumentation (5 ECTS)

### 3.3.9. Dynamic Systems in Biology (7 ECTS)

| Module no.<br>07LE33M-DYNBIO          | Dynamic Systems in Biology 7 E                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                            |      |          | 7 ECTS     |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|------------|--|--|
| Lecturer/s                            | Prof. Dr. Jens Timmer                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            |      |          |            |  |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                            | Credit                                                                                                                                                                                                                     | hrs  | ECTS     | Assessment |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                     | 3+:                                                                                                                                                                                                                        | 2    | 7        | SL or PL   |  |  |
| Term                                  | The lecture is offered irregularly                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                            |      | L        |            |  |  |
| Qualification<br>objectives           | <ul><li>biology.</li><li>Students are able to mathem</li></ul>                                                                                                                                                                                                                                  | biology.                                                                                                                                                                                                                   |      |          |            |  |  |
| Course content                        | <ul> <li>Numerical integration of different</li> <li>Mathematical biology</li> <li>Population models</li> <li>Hodgkin-Huxley model</li> <li>Turing model</li> <li>Enzyme kinetics</li> <li>Systems biology</li> <li>Metabolism</li> <li>Signal transduction</li> <li>Gene regulation</li> </ul> | <ul> <li>Mathematical biology</li> <li>Population models</li> <li>Hodgkin-Huxley model</li> <li>Turing model</li> <li>Enzyme kinetics</li> <li>Systems biology</li> <li>Metabolism</li> <li>Signal transduction</li> </ul> |      |          |            |  |  |
| Literature                            | J.D. Murray. Mathematical Biol                                                                                                                                                                                                                                                                  | ogy, Springer                                                                                                                                                                                                              |      |          |            |  |  |
| Preliminaries /<br>Previous knowledge | Basics of Analysis and Linear Algeb                                                                                                                                                                                                                                                             | ora                                                                                                                                                                                                                        |      |          |            |  |  |
| Final Exam                            | Written (120 min) or oral (30 min) ex                                                                                                                                                                                                                                                           | kam                                                                                                                                                                                                                        |      |          |            |  |  |
| Workload                              | Course                                                                                                                                                                                                                                                                                          | Contact hrs                                                                                                                                                                                                                | Self | -studies | Total      |  |  |
| (nours)                               | (hours)         Lecture and exercises (L+E)         75 h         135 h         210                                                                                                                                                                                                              |                                                                                                                                                                                                                            |      |          |            |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                     |                                                                                                                                                                                                                            |      |          |            |  |  |
| Language                              | English                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                            |      |          |            |  |  |

| Module no.<br>07LE33M- MOLDYN         | Molecular Dynamics & Spectroscopy 7 ECT                                                                                                                                                                                     |                |         |              |                 |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|--------------|-----------------|--|--|
| Lecturer/s                            | Prof. Dr. Gerhard Stock                                                                                                                                                                                                     |                |         |              |                 |  |  |
| Course details                        | Туре                                                                                                                                                                                                                        | Credit         | hrs     | ECTS         | Assessment      |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                 | 3+             | 2       | 7            | SL or PL        |  |  |
| Term                                  | The lecture is offered irregularly                                                                                                                                                                                          |                |         |              |                 |  |  |
| Qualification<br>objectives           |                                                                                                                                                                                                                             |                |         |              |                 |  |  |
| Course content                        | <ul> <li>Time-Dependent Quantum Dynamics</li> <li>Density Matrix Theory</li> <li>Quantum-Classical Formulation</li> <li>Linear Spectroscopy</li> <li>Nonlinear Techniques</li> <li>Multidimensional Spectroscopy</li> </ul> |                |         |              |                 |  |  |
| Literature                            | <ul> <li>P. Hamm, M. Zanni, Concepts<br/>bridge University Press, 2011</li> <li>V. May, O. Kühn, Charge and<br/>Wiley-VCH, 2004</li> <li>S. Mukamel, Principles of No<br/>Press, 1995</li> </ul>                            | Energy Transfe | r Dynar | nics in Mole | ecular Systems, |  |  |
| Preliminaries /<br>Previous knowledge |                                                                                                                                                                                                                             |                |         |              |                 |  |  |
| Final Exam                            | Written (120 min) or oral (30 min) ex                                                                                                                                                                                       | am             |         |              |                 |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                      | Contact hrs    | Sel     | f-studies    | Total           |  |  |
| (nours)                               | Lecture and exercises (L+E)         75 h         135 h         210 h                                                                                                                                                        |                |         |              |                 |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                 |                |         |              |                 |  |  |
| Language                              | English                                                                                                                                                                                                                     |                |         |              |                 |  |  |

#### 3.3.10. Molecular Dynamics & Spectroscopy (7 ECTS)

| Module no.<br>07LE33M-NANOBIO | Physics of Nano-Biosystems 5 ECTS                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                  |                   |            |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|--|--|--|
| Lecturer/s                    | Prof. Dr. Thorsten Hugel (Faculty of                                                                                                                                                                                                         | Chemistry), Dr. T                                                                                                                                                                                                                                                                                                                                | homas Pfohl       |            |  |  |  |
| Course details                | Examination                                                                                                                                                                                                                                  | Credit h                                                                                                                                                                                                                                                                                                                                         | ers ECTS          | Assessment |  |  |  |
|                               | Lecture and exercises (L)                                                                                                                                                                                                                    | Lecture and exercises (L) 2+1 5                                                                                                                                                                                                                                                                                                                  |                   |            |  |  |  |
| Term                          | The lecture is offered regularly in the                                                                                                                                                                                                      | e summer semeste                                                                                                                                                                                                                                                                                                                                 | er.               |            |  |  |  |
| Qualification<br>objectives   | <ul> <li>ical systems in particular molect</li> <li>Students are familiar with the exparticular molecular machines.</li> </ul>                                                                                                               | • In the tutorials the students gain an in-depth understanding of of the lecture and                                                                                                                                                                                                                                                             |                   |            |  |  |  |
| Course content                | <ul> <li>tropic, polymerization)</li> <li>Concepts of equilibrium and nor</li> <li>Jarzynski equation</li> <li>Linear and rotational molecular</li> <li>Molecular details of muscle funct</li> <li>Optical and magnetic tweezers,</li> </ul> | <ul> <li>Concepts of equilibrium and non-equilibrium systems and measurements</li> <li>Jarzynski equation</li> <li>Linear and rotational molecular motors</li> <li>Molecular details of muscle function</li> <li>Optical and magnetic tweezers, AFM</li> <li>Single molecule force spectroscopy</li> <li>Single molecule fluorescence</li> </ul> |                   |            |  |  |  |
| Literature                    | <ul> <li>Jonathon Howard: "Mechanics of<br/>Phil Nelson: "Biological Physics</li> <li>Rob Philips, Jane Kondev, Julie<br/>Cell" (2012)</li> <li>Recent journal publications</li> </ul>                                                       | : Energy, Informat                                                                                                                                                                                                                                                                                                                               | ion, Life" (2003) | . ,        |  |  |  |
| Previous knowledge            | Basic knowledge of statistics and op                                                                                                                                                                                                         | tics is helpful but                                                                                                                                                                                                                                                                                                                              | not mandatory.    |            |  |  |  |
| Final Exam                    | Written (120 min) or oral exam (30 n                                                                                                                                                                                                         | nin)                                                                                                                                                                                                                                                                                                                                             |                   |            |  |  |  |
| Workload<br>(hours)           | Course                                                                                                                                                                                                                                       | Contact hrs                                                                                                                                                                                                                                                                                                                                      | Self-studies      | Total      |  |  |  |
|                               | Lecture and exercises (L)                                                                                                                                                                                                                    | 30 h                                                                                                                                                                                                                                                                                                                                             | 120 h             | 150 h      |  |  |  |
| Usability                     |                                                                                                                                                                                                                                              | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                      |                   |            |  |  |  |
| Language                      | English                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                   |            |  |  |  |

#### 3.3.11. Physics of Nano-Biosystems (5 ECTS)

| Module no.<br>07LE33M-PHYSMED | Physics of Medical Imaging Methods 5 ECTS                                                                                                                                   |                                                |   |          |  |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---|----------|--|--|--|--|
| Lecturer/s                    | Prof. Dr. Michael Bock (Universitäts Klinik                                                                                                                                 | Prof. Dr. Michael Bock (Universitäts Klinikum) |   |          |  |  |  |  |
| Course details                | Examination                                                                                                                                                                 | Examination Credit hrs ECTS Assessme           |   |          |  |  |  |  |
|                               | Lecture and exercises (L)                                                                                                                                                   | 2+1                                            | 5 | SL or PL |  |  |  |  |
| Term                          | The lecture is offered regularly in the winte                                                                                                                               | er semester.                                   |   |          |  |  |  |  |
| Qualification<br>objectives   | <ul> <li>Students are able to distinguish and plied medical imaging methods</li> <li>Students will become familiar with rennology and their clinical application</li> </ul> |                                                |   |          |  |  |  |  |
| Course content                | Students will become familiar with recent developments in medical imaging tech-                                                                                             |                                                |   |          |  |  |  |  |

#### 3.3.12. Physics of Medical Imaging Methods (5 ECTS)

| Literature                            | <ul> <li>Oppelt A: Imaging Systems for Medical Diagnostics</li> <li>Dössel O: Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung</li> </ul> |                                         |              |       |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|-------|--|--|--|
| Preliminaries /<br>Previous knowledge |                                                                                                                                                                            |                                         |              |       |  |  |  |
| Final Exam                            | Written (120 min) or oral exam (30 r                                                                                                                                       | Written (120 min) or oral exam (30 min) |              |       |  |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                     | Contact hrs                             | Self-studies | Total |  |  |  |
|                                       | Lecture and exercises (L)                                                                                                                                                  | 45 h                                    | 105 h        | 150 h |  |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (SL or PL) or "Elective Subjects" (SL)                                                |                                         |              |       |  |  |  |
|                                       |                                                                                                                                                                            |                                         |              |       |  |  |  |

| Module no.<br>07LE33M-CARDI           | Biophysics of cardiac function and signals 5 ECTS                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |                   |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------------------|--|--|
| Lecturer/s                            | Dr. Gunnar Seemann, Prof. Dr. Per<br>mental Cardiovascular Medicine)                                                                                                                                                                                                                     | ter Kohl (Facu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ilty of Me | dicine, Inst | itute for Experi- |  |  |
| Course details                        | Examination                                                                                                                                                                                                                                                                              | Examination Credit hrs ECTS Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |              |                   |  |  |
|                                       | Lecture and exercises (L)                                                                                                                                                                                                                                                                | Lecture and exercises (L) 2+1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |                   |  |  |
| Term                                  | The lecture is offered regularly in the                                                                                                                                                                                                                                                  | e winter seme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ster.      |              |                   |  |  |
| Qualification<br>objectives           | mathematical equations in order to<br>used as this system. The students I<br>heart and its modelling. Additionally<br>human body are described and how                                                                                                                                   | The basic concept of this lecture is to examine a biological system, analyse it and define mathematical equations in order to describe the system. In this lecture, the heart is used as this system. The students learn the electrical and mechanical function of the heart and its modelling. Additionally, the bioelectrical signals that are generated in the human body are described and how these signals can be measured, interpreted and processed. The content is explained both on the biological level and based mathematical modelling. |            |              |                   |  |  |
| Course content                        | <ul> <li>Cellular electrophysiology</li> <li>Conduction of action potentials</li> <li>Cardiac contraction and electro</li> <li>Optogenetics in cardiac cells</li> <li>Numerical field calculation in th</li> <li>Measurement of bioelectrical si</li> <li>Electrocardiography</li> </ul> | <ul> <li>Conduction of action potentials</li> <li>Cardiac contraction and electromechanical interactions</li> <li>Optogenetics in cardiac cells</li> <li>Numerical field calculation in the human body</li> <li>Measurement of bioelectrical signals</li> <li>Electrocardiography</li> <li>Imaging of bioelectrical sources</li> </ul>                                                                                                                                                                                                               |            |              |                   |  |  |
| Literature                            | lecture slides                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |                   |  |  |
| Preliminaries /<br>Previous knowledge | Basic interest in biology and comput<br>are beneficial                                                                                                                                                                                                                                   | tational mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ling. Kno  | wledge in N  | latlab or Python  |  |  |
| Final Exam                            | Written (120 min) or oral exam (30 n                                                                                                                                                                                                                                                     | nin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |              |                   |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                   | Contact h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 's Sel     | f-studies    | Total             |  |  |
|                                       | Lecture and exercises (L)                                                                                                                                                                                                                                                                | 45 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 105 h        | 150 h             |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (SL or PL) or "Elective Subjects" (SL)                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |                   |  |  |
| Language                              | English                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |              |                   |  |  |

#### 3.3.13. Biophysics of Cardiac Function and Signals (5 ECTS)

| Module no.<br>07LE33M-Neuro           | Computational Neuroscience:Models of Neurons and Networks7 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |              |                 |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-----------------|--|
| Lecturer/s                            | Prof. Dr. Stefan Rotter (Faculty of Biology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , Bernstein Cente | er Freiburg) | )               |  |
| Course details                        | Examination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Credit hrs        | ECTS         | Assessment      |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2+2               | 7            | SL or PL        |  |
| Term                                  | The lecture is offered regularly in the sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mer semester.     |              | 1               |  |
| Qualification<br>objectives           | <ul> <li>The students have the competence to</li> <li>link mathematical models with biological phenomena arising in systems neuroscience both using theory and computer simulations;</li> <li>understand the fundamental trade-off between biological detail and mathematical abstraction, and evaluate its consequences;</li> <li>explain the steps necessary to develop and validate models of a biological neuron or a biological neuronal network;</li> <li>appreciate and explain the gain in understanding biological mechanisms that arise from the study of mathematical models of neuronal systems;</li> <li>critically discuss the limits of mathematical modeling and numerical methods in computational neuroscience</li> </ul>                                                                                                                                           |                   |              |                 |  |
| Course content                        | computational neuroscience.         This lecture series covers important standard topics in computational neuroscience, focusing on dynamic networks of spiking neurons         • Mathematical concepts and methods         • Hodgkin-Huxley theory of the action potential         • Stochastic theory of ionic channels         • The integrate-and-fire neuron model         • Stochastic point processes         • Stochastic theory of synaptic integration         • Stochastic theory of spike generation: The perfect integrator         • Stochastic theory of spike generation: The leaky integrator         • Conductance based neurons and networks         • Correlated neuronal populations         • Pulse packets and synfire chains         • Random graphs and networks         • Dynamics of spiking networks         • Population dynamics of recurrent networks. |                   |              |                 |  |
| Literature                            | <ul> <li>lecture slides</li> <li>a bibliography and web-links to complementary reading for each course day will be provided along with the slides of the lecture.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |              |                 |  |
| Preliminaries /<br>Previous knowledge | Familiarity with elementary calculus and basic neurobiology is helpful, but not requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                 | assumed      | . Background in |  |

#### 3.3.14. Computational Neuroscience: Models of Neurons and Networks (7 ECTS)

| Final Exam          | Written exam (120 min), oral exam (60 min) or term paper (10 pages), in combination with course below.                      |             |              |       |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------|--|
| Workload<br>(hours) | Course                                                                                                                      | Contact hrs | Self-studies | Total |  |
|                     | Lecture and exercises (L)                                                                                                   | 105 h       | 105 h        | 210 h |  |
| Usability           | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (SL or PL) or "Elective Subjects" (SL) |             |              |       |  |
| Language            | English                                                                                                                     |             |              |       |  |

# 3.3.15. Computational Neuroscience: Simulation of Biological Neuronal Networks (5 ECTS)

| Module no.<br>07LE33M-Neuro           | Computational Neuroscience:Simulation of Biological Neuronal Networks5 ECTS                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                |                     |                  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|--|--|--|
| Lecturer/s                            | Prof. Dr. Stefan Rotter (Faculty of Biology, Bernstein Center Freiburg)                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                |                     |                  |  |  |  |
| Course details                        | Examination                                                                                                                                                                                                                                      | Credit h                                                                                                                                                                                                                                                                                                                                       | nrs ECTS            | Assessment       |  |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                      | 1+2                                                                                                                                                                                                                                                                                                                                            | 5                   | SL or PL         |  |  |  |
| Term                                  | The lecture is offered regularly in the                                                                                                                                                                                                          | e summer semest                                                                                                                                                                                                                                                                                                                                | er.                 |                  |  |  |  |
| Qualification<br>objectives           | <ul> <li>ence, both using theory and con</li> <li>implement and simulate simple<br/>methods of scientific programm</li> <li>implement simple programs for</li> <li>appreciate and explain the gain<br/>from the study of mathematical</li> </ul> | <ul> <li>appreciate and explain the gain in understanding biological mechanisms that arise from the study of mathematical models of neuronal systems and their simulation</li> <li>critically discuss the limits of mathematical modeling and numerical methods in</li> </ul>                                                                  |                     |                  |  |  |  |
| Course content                        | spiking neuron models. We start from more complex topics such as pheno                                                                                                                                                                           | This course covers the fundamentals of simulating networks of single-compartment spiking neuron models. We start from the concept of a point neuron and then introduce more complex topics such as phenomenological models of synaptic plasticity, connectivity patterns and network dynamics.                                                 |                     |                  |  |  |  |
| Literature                            | <ul> <li>lecture slides</li> <li>see also http://www.nest-initiativitutorial on the BNN simulator N</li> </ul>                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                | general information | on and an online |  |  |  |
| Preliminaries /<br>Previous knowledge | is possible, see http://www.python.o<br>torial on the programming language                                                                                                                                                                       | Basic knowledge in scientific computing with Python is absolutely required. Self-study is possible, see http://www.python.org/ for some general information and an online tu-<br>torial on the programming language Python. Further documentation on the scientific libraries used in the course is also found online (see http://scipy.org/). |                     |                  |  |  |  |
| Final Exam                            | Written exam (120 min), oral exam with course above.                                                                                                                                                                                             | Written exam (120 min), oral exam (60 min) or term paper (10 pages), in combination with course above.                                                                                                                                                                                                                                         |                     |                  |  |  |  |
| Workload                              | Course                                                                                                                                                                                                                                           | Contact hrs                                                                                                                                                                                                                                                                                                                                    | Self-studies        | Total            |  |  |  |
| (hours)                               | Lecture and exercises (L)                                                                                                                                                                                                                        | 60 h                                                                                                                                                                                                                                                                                                                                           | 90 h                | 150 h            |  |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (SL or PL) or "Elective Subjects" (SL)                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                |                     |                  |  |  |  |
| Language                              | English                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                |                     |                  |  |  |  |

| Module no.<br>07LE33M-POL             | Experimental Polymer Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |             |           | 9 ECTS     |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|-----------|------------|--|--|
| Lecturer/s                            | Prof. Dr. Günter Reiter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |             |           |            |  |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                                         | Credit hrs  | ECTS      | Assessment |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lecture and exercises (L+E) 4+2 9 SL or P |             |           |            |  |  |
| Term                                  | The lecture is offered in the winter s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | emester                                   |             |           |            |  |  |
| Qualification<br>objectives           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |             |           |            |  |  |
| Course content                        | We can't imagine life and technology today without polymers, if you think of materials like PET bottles and PVC, nylon, teflon or rubber. Also in nature biopolymers are ubiquitous, e.g. DNA, proteins or cellulose. This lecture will give an introduction into the experimental and theoretical concepts in understanding and characterisation of polymer systems. Both, applied and material aspects will be discussed - like polymer flow, elastomers and crystalline polymers - as well as present topics of fundamental research, e.g. glass transition, dynamics in confined geometries and self assembly. The lecture will deal with basic theoretical concepts and descriptive experiments. It will start with simple single chain phenomena and step by step develop more complex structures and dynamics of polymer solutions, melts and blends. |                                           |             |           |            |  |  |
| Literature                            | <ul> <li>G. Strobl, The Physics of Poly</li> <li>Colby &amp; Rubinstein, Polymer F</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |             |           |            |  |  |
| Preliminaries /<br>Previous knowledge | Experimental Physics I-IV (B.Sc. Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ysik), Ther                               | rmodynamics |           |            |  |  |
| Final Exam                            | Written (120 min) or oral (30 min) ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | am                                        |             |           |            |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Contac                                    | ct hrs Sel  | f-studies | Total      |  |  |
| (nouro)                               | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90                                        | h           | 180 h     | 270 h      |  |  |
| Usability                             | M.Sc. Physics: "Advanced Physics 2" (PL), "Advanced Physics 3" (SL), "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Advanced Experimental Physics" (PL), "Applied Physics" (PL<br>or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |             |           |            |  |  |
| Language                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |             |           |            |  |  |

#### 3.3.16. Experimental Polymer Physics (9 ECTS)

| Module no.<br>07LE33M-SELFAS          | Physical Processes of Self-Assembly and<br>Pattern Formation7 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                            |                                      |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------|--------------------------------------|--|--|
| Lecturer/s                            | Prof. Dr. Günter Reiter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                            |                                      |  |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Credit hrs                               | ECTS                       | Assessment                           |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3+2                                      | 7                          | SL or PL                             |  |  |
| Term                                  | The lecture is offered in the summer seme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ester                                    | I                          |                                      |  |  |
| Qualification<br>objectives           | Students will learn how structural organiz<br>system, can lead to regular patterns on s<br>scopic sizes. They will understand the ph<br>selves together without guidance or mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | scales ranging from                      | m molecula<br>ecules or ol | ar to the macro-<br>bjects put them- |  |  |
| Course content                        | Goal:<br>Questions about how organization and order in various systems arises have been<br>raised since ancient times. Self-assembling processes are common throughout nature<br>and technology. The ability of molecules and objects to self-assemble into supra-mo-<br>lecular arrangements is an important issue in nanotechnology. The limited number of<br>forms and shapes we identify in the objects around us represent only a small sub-set<br>of those theoretically possible. So why don't we see more variety? To be able answering<br>such a question we have to learn more about the physical processes responsible for<br>self-organization and self-assembly. |                                          |                            |                                      |  |  |
|                                       | Preliminary program:<br>"Physical laws for making compromises"<br>Self-assembly is governed by (intermolecular) interactions between pre-existing parts<br>or disordered components of a system. The final (desired) structure is 'encoded' in the<br>shape and properties of the basic building blocks.<br>In this course, we will discuss general rules about growth and evolution of structures<br>and patterns as well as methods that predict changes in organization due to changes<br>made to the underlying components and/or the environment.                                                                                                                        |                                          |                            |                                      |  |  |
| Literature                            | <ul> <li>Yoon S. LEE, Self-Assembly and Nanotechnology:A Force Balance Approach,<br/>Wiley 2008</li> <li>Robert KELSALL, Ian W. HAMLEY, Mark GEOGHEGAN, Nanoscale Science<br/>and Technology, Wiley, 2005</li> <li>Richard A.L. JONES, Soft Machines: Nanotechnology and Life, Oxford University<br/>Press, USA 2008</li> <li>Philip BALL, Shapes, Flow, Branches. Nature's Patterns: A Tapestry in Three<br/>Parts, Oxford University Press, USA</li> <li>J.N. ISRAELACHVILI, Intermolecular and Surface Forces, Third Edition, Else-<br/>vier, 2011</li> <li>Continuative and supplementary references will be given during the lecture.</li> </ul>                         |                                          |                            |                                      |  |  |
| Preliminaries /<br>Previous knowledge | Experimentalphysik IV (Condensed Matte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Experimentalphysik IV (Condensed Matter) |                            |                                      |  |  |

#### 3.3.17. Physical Processes of Self-Assembly and Pattern Formation (7 ECTS)

| Final Exam          | Written (120 min) or oral (30 min) exam                                                                                     |      |       |       |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|------|-------|-------|--|
| Workload<br>(hours) | Course Contact hrs Self-studies                                                                                             |      |       |       |  |
| (nours)             | Lecture and exercises (L+E)                                                                                                 | 75 h | 135 h | 210 h |  |
| Usability           | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL) |      |       |       |  |
| Language            | English                                                                                                                     |      |       |       |  |

| Module no.<br>07LE33M- HL             | Fundamentals of Semiconductors& Optoelectronics5 ECTS                                                                                                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                               |                  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| Lecturer/s                            | apl. Prof. Dr. Joachim Wagner (Frau                                                                                                                                                                                                                                                                                                                          | apl. Prof. Dr. Joachim Wagner (Fraunhofer IAF), Prof. Andreas Bett (Fraunhofr ISE)                                          |                                                                                                               |                  |  |  |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                         | Type Credit hrs ECTS Asses                                                                                                  |                                                                                                               |                  |  |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                  | 2+1                                                                                                                         | 5                                                                                                             | SL or PL         |  |  |  |
| Term                                  | The lecture is offered in the winter se                                                                                                                                                                                                                                                                                                                      | emester                                                                                                                     |                                                                                                               |                  |  |  |  |
| Qualification<br>objectives           | well as techniques for the fabrication<br>semiconductor layers; furtherm<br>niques for the characterization of<br>structure parameters.                                                                                                                                                                                                                      | • Students become also familiar with the working principle and different variants of                                        |                                                                                                               |                  |  |  |  |
| Course content                        | <ul> <li>Inorganic crystalline semicondu</li> <li>Fabrication of bulk semiconduct</li> <li>Electronic band structure, tight-</li> <li>Effective mass of electrons and</li> <li>Density of states, statistics of el</li> <li>Electrical transport by electrons</li> <li>Quantization effects in semicon</li> <li>p-n-junction, photodiode, light e</li> </ul> | tor crystals and e<br>binding vs. nearly<br>holes, n- and p-t<br>ectrons and holes<br>and holes, electr<br>ductors, quantum | pitaxial layers<br><sup>y</sup> free electron ap<br>ype doping<br>s<br>ic fields and cur<br>h films and super | oproach<br>rents |  |  |  |
| Literature                            | <ul> <li>H. Ibach, H. Lüth, "Festkörperpl</li> <li>K. Seeger, "Semiconductor Phy</li> <li>P. Yu, M. Cardona, "Fundamen</li> </ul>                                                                                                                                                                                                                            | sics" (Springer, 2                                                                                                          | .004)                                                                                                         | r, 2010)         |  |  |  |
| Preliminaries /<br>Previous knowledge | Solid-state physics and theoretical p                                                                                                                                                                                                                                                                                                                        | hysics at the leve                                                                                                          | I of a BSc in Ph                                                                                              | ysics            |  |  |  |
| Final Exam                            | Oral exam (30 min)                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |                                                                                                               |                  |  |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                       | Contact hrs                                                                                                                 | Self-studies                                                                                                  | Total            |  |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                  | 45 h                                                                                                                        | 105 h                                                                                                         | 150 h            |  |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                                               |                  |  |  |  |
| Language                              | English or German                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |                                                                                                               |                  |  |  |  |

#### 3.3.18. Fundamentals of Semiconductors & Optoelectronics(5 ECTS)

| <b>Module no.</b><br>07LE33M- HLBAU   | Semiconductor Devices                                                                                                                                                                                                                           | 5 ECTS                                                                      |                 |                     |  |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------|---------------------|--|--|--|
| Lecturer/s                            | apl. Prof. Dr. Harald Schneider (Hel                                                                                                                                                                                                            | apl. Prof. Dr. Harald Schneider (Helmholtz-Zentrum Dresden-Rossendorf HZDR) |                 |                     |  |  |  |
| Course details                        | Туре                                                                                                                                                                                                                                            | Credit                                                                      | hrs ECTS        | S Assessment        |  |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                     | Lecture and exercises (L+E) 2+1 5 SL                                        |                 |                     |  |  |  |
| Term                                  | The lecture is offered in the summer<br>break (May/June)                                                                                                                                                                                        | r semester as a b                                                           | olock course du | Iring the Pentecost |  |  |  |
| Qualification<br>objectives           |                                                                                                                                                                                                                                                 |                                                                             |                 |                     |  |  |  |
| Course content                        | <ul> <li>Transport phenomena</li> <li>Metal-semiconductor-contact, S</li> <li>p-n junction: diode rectifier, pho</li> <li>Bipolar transistors, HBT</li> <li>Field effect-transistors: JFET, N</li> <li>Quantum structure-elements: R</li> </ul> | todiode, LED, las                                                           | MOSFET, FGI     |                     |  |  |  |
| Literature                            | <ul> <li>S.M. Sze and K.K. Ng, Physics</li> <li>S.M. Sze, Semiconductor Device</li> </ul>                                                                                                                                                       |                                                                             | or Devices, Wil | ey, 2006            |  |  |  |
| Preliminaries /<br>Previous knowledge | Experimentalphysik IV (Solid state p<br>& Optoelectronics" (apl. Prof. J. Wag                                                                                                                                                                   |                                                                             | Fundamentals    | of Semiconductors   |  |  |  |
| Final Exam                            | Oral exam (30 min)                                                                                                                                                                                                                              |                                                                             |                 |                     |  |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                          | Contact hrs                                                                 | Self-studie     | s Total             |  |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                     | 45 h                                                                        | 105 h           | 150 h               |  |  |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                     |                                                                             |                 |                     |  |  |  |
| Language                              | English or German                                                                                                                                                                                                                               |                                                                             |                 |                     |  |  |  |

#### 3.3.19. Semiconductor Devices (5 ECTS)

| <b>Module no.</b><br>11LE50MO-5115 | Mechanical Properties and Degradation Mechanisms<br>3 ECTS                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |            |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|--|
| Lecturer/s                         | Prof. Dr. Chris Eberl (Fraunhofer IW                                                                                                                                                                                                                                                      | M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |            |  |
| Course details                     | Туре                                                                                                                                                                                                                                                                                      | Credit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nrs ECTS     | Assessment |  |
|                                    | Lecture and exercises (L)                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3            | SL         |  |
| Term                               | The lecture is offered in the summer                                                                                                                                                                                                                                                      | semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·            |            |  |
| Qualification<br>objectives        | formance of micro systems. You will<br>and functional materials as well as<br>Based on the physical understandin                                                                                                                                                                          | The goal is to learn how materials properties and their impact on functionality and per-<br>formance of micro systems. You will learn about the physical mechanisms in structural<br>and functional materials as well as damage evolution during the applications lifetime.<br>Based on the physical understanding you can evaluate microsystem designs, improve<br>their lifetime and performance. This allows specifying materials and systems closer to<br>their performance limit. |              |            |  |
| Course content                     | <ul> <li>Fundamentals in stress and stra</li> <li>Fundamentals in mechanics of</li> <li>Micro- and nanostructured mate</li> <li>Small scale characterization of         <ul> <li>Intrinsic stresses</li> <li>Elastic and plastic beha</li> <li>Adhesion properties</li> </ul> </li> </ul> | <ul> <li>Elastic and plastic behavior</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |  |
| Literature                         | <ul> <li>L.B. Freund and S. Suresh: "Th</li> <li>T.H. Courtney: "Mechanical Bel</li> <li>M. Madou: "Fundamentals of M</li> <li>W. Menz und P. Bley: "Mikrosystema (Mathematical Science)</li> </ul>                                                                                       | <ul> <li>M. Ohring: "The Materials Science of Thin Films", Academic Press, 1992</li> <li>L.B. Freund and S. Suresh: "Thin Film Materials"</li> <li>T.H. Courtney: "Mechanical Behaviour of Materials", Mc-Graw-Hill, 1990</li> <li>M. Madou: "Fundamentals of Microfabrication", CRC Press 1997</li> <li>W. Menz und P. Bley: "Mikrosystemtechnik für Ingenieure", VCH Publishers, 1993</li> <li>Chang Liu: Foundations of MEMS, Illinois ECE Series, 2006</li> </ul>                  |              |            |  |
| Previous knowledge                 | -                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |            |  |
| Final Exam                         | written or oral examination                                                                                                                                                                                                                                                               | written or oral examination                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |            |  |
| Workload<br>(hours)                | Course                                                                                                                                                                                                                                                                                    | Contact hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Self-studies | 5 Total    |  |
|                                    | Lecture and exercises (L)                                                                                                                                                                                                                                                                 | 30 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60 h         | 90 h       |  |
| Usability                          | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (SL) or "Elective Subjects" (SL)                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |            |  |
| Language                           | English                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |            |  |

#### 3.3.20. Mechanical Properties and Degradation Mechanisms (3 ECTS)

| Module no.<br>07LE33M- MODMAT         | Theory and Modeling of Materials 5 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |                |              |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|--|
| Lecturer/s                            | apl. Prof. Dr. Christian Elsässer (Fra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | unhofer IWM)                                                                                                                                                                                                                                                                      |                |              |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Credit h                                                                                                                                                                                                                                                                          | ors ECTS       | S Assessment |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2+1                                                                                                                                                                                                                                                                               | 5              | SL or PL     |  |
| Term                                  | Courses of the lecture series are off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ered regularly in a                                                                                                                                                                                                                                                               | Iternating ord | er.          |  |
| Qualification<br>objectives           | <ul><li>tical problems of the physics of</li><li>Students become familiar with</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Students become able to develop and apply theoretical models to investigate practical problems of the physics of materials</li> <li>Students become familiar with theoretical condensed-matter physics and computational modeling and simulation of materials</li> </ul> |                |              |  |
| Course content                        | The series of one- or two-semester elective-subject lectures introduces theoretical models and computational methods of solid-state physics for the description of many-<br>electron systems, by means of which cohesion and structure, physical, chemical, or mechanical properties of perfect crystals and real materials can be understood qualita-<br>tively and calculated quantitatively on a microscopic fundament.<br>The lecture series comprises courses on, e.g., these topics:<br>• Electronic-structure theory of condensed matter I + II<br>• Superconductivity I (phenomenology) + II (microscopic theory)<br>• Theoretical models for magnetic properties of materials<br>• Theory of atomistic and electronic structures at interfaces in crystals<br>• etc.<br>The content of each course will be announced for each semester. |                                                                                                                                                                                                                                                                                   |                |              |  |
| Literature                            | recommended literature will be announced in each lecture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                |              |  |
| Preliminaries /<br>Previous knowledge | Theoretical physics and solid-state physics on the level of a BSc in Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                   |                |              |  |
| Final Exam                            | Oral exam (30 min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   |                |              |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contact hrs                                                                                                                                                                                                                                                                       | Self-studie    | s Total      |  |
| (                                     | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 105 h                                                                                                                                                                                                                                                                             | 150 h          |              |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                   |                |              |  |
| Language                              | English or German                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                   |                |              |  |

#### 3.3.21. Theory and Modeling of Materials (5 ECTS)

#### 3.3.22. Quantum Transport (7 ECTS)

| <b>Module no.</b><br>07LE33M- QTRANS | Quantum Transport 7 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |       |         |          |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|---------|----------|--|
| Lecturer/s                           | PD Dr. Michael Walter, PD Dr. Thor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PD Dr. Michael Walter, PD Dr. Thomas Wellens |       |         |          |  |
| Course details                       | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Type Credit hrs ECTS Assess                  |       |         |          |  |
|                                      | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3+2                                          |       | 7       | SL or PL |  |
| Term                                 | The lecture is offered irregularly in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne summer semes                              | ster. |         |          |  |
| Qualification<br>objectives          | <ul> <li>Students become familiar with advanced theoretical tools relevant for quantum transport theory (Green functions, scattering theory, diagrammatic methods for performing disorder average, Landau-Büttiker formalism)</li> <li>Students understand how quantum effects modify the transport behaviour in various physical systems</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |         |          |  |
| Course content                       | How to describe transport of a particle from one point in space to another one is a fundamental problem in theoretical physics, which is at the same time highly relevant for many technological applications, for example in electronics (transport of electrons) or solar cells (separation of positive and negative charge carriers generated by light). On microscopic scales, quantum properties such as the wave nature of a quantum particle, or the quantization of energy levels become relevant and make quantum transport different from classical transport based on Newton's equations. In this lecture, we will approach the topic of quantum transport from different perspectives, with focus on (i) transport of quantum particles (or waves) in disordered structures which are described in a statistical way, and (ii) the explicit description of transport in an electronic device at the atomic scale, with the single molecule transistor as prominent example, which is likely to be the basis of future electronics. |                                              |       |         |          |  |
| Literature                           | <ul> <li>E. Akkermans and G. Montambaux, Mesoscopic Physics of electrons and photons<br/>(Cambridge University Press, Cambridge, 2007)</li> <li>P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena<br/>ena (Academic Press, New York, 1995)</li> <li>S. Datta, Quantum Transport: Atom to Transistor (Cambridge, 2005).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |       |         |          |  |
| Previous knowledge                   | Basic quantum mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |       |         |          |  |
| Final Exam                           | Written (120 min) or oral (30 min) exam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |       |         |          |  |
| Workload<br>(hours)                  | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contact hrs                                  | Self- | studies | Total    |  |
| (                                    | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75 h                                         | 1:    | 35 h    | 210 h    |  |
| Usability                            | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |       |         |          |  |
| Language                             | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                              |       |         |          |  |

| Module no.<br>07LE33M-CRYSTGROW       | Crystal Growth Technology 3 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |              |            |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|------------|--|
| Lecturer/s                            | PD Dr. Andreas Danilewsky (Kristall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ographisches Inst | itut)        |            |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Credit h          | ers ECTS     | Assessment |  |
|                                       | Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                 | 3            | SL or PL   |  |
| Term                                  | The lecture is offered in the winter se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | emester           |              |            |  |
| Qualification<br>objectives           | <ul> <li>Students know the different methods of crystal growth regarding the phase transition and configurations. They predict the related physical as well as the chemical processes and identify the problems of industrial crystal growth techniques. They analyse the application of external fields and the use of simulation tools.</li> <li>Students are familiar with the different types of crystal growth methods and how to produce various crystalline materials.</li> </ul>                                                                 |                   |              |            |  |
| Course content                        | <ul> <li>Fundamentals of crystal growth basics and methods are given. The overview is followed by a discussion of current aspects of bulk crystal growth for scientific and commercial production. These aspects are the use of external fields under high pressure and gravity fields like microgravity.</li> <li>The principles of thermodynamic equilibrium in growth systems are introduced and examples are applied.</li> <li>The problems of large industrial crystals and the solution with the use of simulation tools are presented.</li> </ul> |                   |              |            |  |
| Literature                            | <ul> <li>Hurle, D.T.J., Handbook of Crystal Growth, Elsevier, Amsterdam, 1352.</li> <li>Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (Eds.) (2010): Handbook of Crystal Growth. Springer, Berlin, 1818.</li> <li>Duffar, T. (Ed.) (2010): Crystal Growth processes based on capillarity. Wiley, Chichester, 566.</li> <li>Rudolph, P. Handbook of Crystal Growth (2015), 2nd Ed. vols 1a-2b. Elsevier, Amsterdam.</li> </ul>                                                                                                                        |                   |              |            |  |
| Preliminaries /<br>Previous knowledge | Basic knowledge of solid state physics and crystallography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |              |            |  |
| Final Exam                            | Written or oral exam (120 min)/ protocol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |              |            |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contact hrs       | Self-studies | Total      |  |
|                                       | Lecture (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 h              | 60 h         | 90 h       |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |              |            |  |
| Language                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |              |            |  |

#### 3.3.23. Crystal Growth Technology (5 ECTS)

| Module no.<br>07LE33M- LTPHYS         | Low Temperature Physics 9 ECTS                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|--|--|
| Lecturer/s                            | Prof. Dr. Frank Stienkemeier                                                                                                                                                                                                                                                                                         | Prof. Dr. Frank Stienkemeier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |            |  |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                 | Credit h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ors ECTS     | Assessment |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                          | Lecture and exercises (L+E) 4+2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |            |  |  |
| Term                                  | The lecture is offered irregularly                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·            |            |  |  |
| Qualification<br>objectives           | <ul> <li>ciples as well as the experiment reaching extreme low temperate</li> <li>Students will be familiar with materials will know how low temperate signed, and what materials are</li> </ul>                                                                                                                     | <ul> <li>The lecture Low Temperature Physics provides an introduction to the physical principles as well as the experimental techniques for working at low temperatures and reaching extreme low temperature conditions.</li> <li>Students will be familiar with material properties at low temperatures.</li> <li>Students will know how low temperatures are generated, how cryostats are designed, and what materials are used.</li> <li>Students will learn modern scientific work at low as well as ultra-low temperatures</li> </ul>                                                                                                                  |              |            |  |  |
| Course content                        | <ul> <li>states, thermal expansion, frict ductivity)</li> <li>Superfluidity</li> <li>Matrix and helium droplet isola</li> <li>Superconductivity</li> <li>Generation of low temperature coolers)</li> <li>Measurements at low temperatliquids, magnetic measuremer</li> <li>Cryostats (thermal insulation,</li> </ul> | <ul> <li>states, thermal expansion, friction, viscosity, thermal conductivity, electrical conductivity)</li> <li>Superfluidity</li> <li>Matrix and helium droplet isolation techniques</li> <li>Superconductivity</li> <li>Generation of low temperatures (refrigerators, Joule-Thompson effect, cryocoolers)</li> <li>Measurements at low temperature conditions (temperature, pressure, levels of liquids, magnetic measurements, acoustic measurements, etc.)</li> <li>Cryostats (thermal insulation, materials, containers and transfer lines, etc.)</li> <li>Cold dilute samples (cold molecular beams, trapped molecules and trapped ions)</li> </ul> |              |            |  |  |
| Literature                            | <ul> <li>Enss, Hunklinger, Tieftemperaturphysik, Springer (2000)</li> <li>Frank Pobell, Matter and Methods at Low Temperatures, Springer (1996)</li> <li>J.G. Weisend II, Handbook of Cryogenic Engineering, Taylor &amp; Francis (1998)</li> </ul>                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            |  |  |
| Preliminaries /<br>Previous knowledge | Experimental Physics I-IV<br>Quantum Mechanics                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |            |  |  |
| Final Exam                            | Written (120 min) or oral (30 min) ex                                                                                                                                                                                                                                                                                | Written (120 min) or oral (30 min) exam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |            |  |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                               | Contact hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Self-studies | Total      |  |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                          | 90 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180 h        | 270 h      |  |  |

#### 3.3.24. Low Temperature Physics (9 ECTS)

| Usability | <ul> <li>M.Sc. Physics: "Advanced Physics 2" (PL), "Advanced Physics 3" (SL), "Elective Subjects" (SL),</li> <li>M.Sc. Applied Physics: "Advanced Experimental Physics" (PL), "Applied Physics" (PL or SL) or "Elective Subjects" (SL)</li> </ul> |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Language  | English                                                                                                                                                                                                                                           |

#### 3.3.25. Statistics and Numerics (7 ECTS)

| Module no.<br>07LE33M-STATNUM         | Statistics and Numerics 7 ECTS                                                                                              |                                                                                                                                                                                                                                                                                                        |          |      |            |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------------|--|
| Lecturer/s                            | Prof. Dr. Jens Timmer                                                                                                       |                                                                                                                                                                                                                                                                                                        |          |      |            |  |
| Course details                        | Туре                                                                                                                        | Credit                                                                                                                                                                                                                                                                                                 | hrs E    | стѕ  | Assessment |  |
|                                       | Lecture and exercises (L+E)                                                                                                 | 3+2                                                                                                                                                                                                                                                                                                    |          | 7    | SL or PL   |  |
| Term                                  | The lecture is offered irregularly                                                                                          |                                                                                                                                                                                                                                                                                                        |          |      |            |  |
| Qualification<br>objectives           | Students are able to mathematic                                                                                             | <ul> <li>Students are able to mathematically formulate statistical and numerical problems.</li> <li>Students can implement computer programs to solve statistical and numerical</li> </ul>                                                                                                             |          |      |            |  |
| Course content                        | <ul><li> Optimization</li><li> Non-linear modeling</li><li> Kernel estimator</li></ul>                                      | <ul> <li>Parameter estimation</li> <li>Test theory</li> <li>Solution of systems of linear equations</li> <li>Optimization</li> <li>Non-linear modeling</li> <li>Kernel estimator</li> <li>Integration of ordinary, partial and stochastic differential equations</li> <li>Spectral analysis</li> </ul> |          |      |            |  |
| Literature                            | Press et al. Numerical Recipes                                                                                              | Press et al. Numerical Recipes, Cambridge University Press                                                                                                                                                                                                                                             |          |      |            |  |
| Preliminaries /<br>Previous knowledge | Basics of Analysis and Linear Algeb                                                                                         | Basics of Analysis and Linear Algebra                                                                                                                                                                                                                                                                  |          |      |            |  |
| Final Exam                            | Written (120 min) or oral (30 min) ex                                                                                       | Written (120 min) or oral (30 min) exam                                                                                                                                                                                                                                                                |          |      |            |  |
| Workload<br>(hours)                   | Course                                                                                                                      | Contact hrs                                                                                                                                                                                                                                                                                            | Self-stu | dies | Total      |  |
|                                       | Lecture and exercises (L+E) 75 h 135 h                                                                                      |                                                                                                                                                                                                                                                                                                        |          |      | 210 h      |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL) |                                                                                                                                                                                                                                                                                                        |          |      |            |  |
| Language                              | English or German                                                                                                           | English or German                                                                                                                                                                                                                                                                                      |          |      |            |  |

| Module no.<br>07LE33M-DFT             | Computational Physics:7 ECTSDensity Functional Theory7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |            |          |            |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------|------------|
| Lecturer/s                            | Prof. Dr. Michael Moseler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |            |          |            |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Credit      | hrs        | ECTS     | Assessment |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3+2         |            | 7        | SL or PL   |
| Term                                  | The lecture is offered irregularly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |            |          |            |
| Qualification<br>objectives           | <ul> <li>Students are familiar with electronic structure calculations.</li> <li>Students are familiar with the basic Hamiltonian of the electronic structure problem and electronic many-body wave function.</li> <li>Students know the Hartree-Fock equations and post Hartree-Fock methods – such as Møller-Plesset and Configurational Interaction.</li> <li>Students are familiar with the Hohenberg-Kohn-theorem, the Kohn-Sham-equations, the concept of an exchange-correlation potential and the various local approximations to it.</li> <li>Student arefamiliar with time-dependent DFT and know the Runge-Gross-theorem and the time-dependent Kohn-Sham-equations.</li> </ul> |             |            |          |            |
| Course content                        | Density functional theory (DFT) has become one of the most important tools for the numerical solution of the electronic many-body Schrödinger equation. It is currently used by many material scientists to study the properties complex systems containing up to several thousand atoms and electrons. This lecture introduces the theoretical foundations of DFT within the Hohenberg-Kohn-Sham frame work. It also touches numerical questions in an accompanying hands-on course. Numerical exercises will cover the electronic structure of atoms and nanoparticles.                                                                                                                 |             |            |          |            |
| Literature                            | Lecture script: Electronic structure of matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |            |          |            |
| Preliminaries /<br>Previous knowledge | Basic knowledge in many-body quantum mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |            |          |            |
| Final Exam                            | Written or oral exam (60 min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |            |          |            |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Contact hrs | Self       | -studies | Total      |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75 h        | 75 h 135 h |          | 210 h      |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |            |          |            |
| Language                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |            |          |            |

#### 3.3.26. Computational Physics: Density Functional Theory (7 ECTS)

| <b>Module no.</b><br>11LE50MO-2080    | Modelling and System Identification 6 ECTS                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                           |          |             |          |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------|--|
| Lecturer/s                            | Prof. Dr. Moritz Diehl (IMTEK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prof. Dr. Moritz Diehl (IMTEK)                                                                                                                                                                                                                                                                                                                            |          |             |          |  |
| Course details                        | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Type Credit hrs ECTS Assessmen                                                                                                                                                                                                                                                                                                                            |          |             |          |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2+2                                                                                                                                                                                                                                                                                                                                                       |          | 6           | SL or PL |  |
| Term                                  | The lecture is offered regularly in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e winter semeste                                                                                                                                                                                                                                                                                                                                          | r.       |             |          |  |
| Qualification<br>objectives           | describe and predict the behaviour become able to use input-output m                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aim of the module is to enable the students to create and identify models that help to describe and predict the behaviour of dynamic systems. In particular, students shall become able to use input-output measurement data in form of time series to identify unknown system parameters and to assess the validity and accuracy of the obtained models. |          |             |          |  |
| Course content                        | Linear and Nonlinear Least Squares, Maximum Likelihood and Bayesian Estimation,<br>Cramer-Rao-Inequality, Recursive Estimation, Dynamic System Model Classes (Linear<br>and Nonlinear, Continuous and Discrete Time, State Space and Input Output, White<br>Box and Black Box Models), Application of identification methods to several case stud-<br>ies. The lecture course will also review necessary concepts from the three fields Statis-<br>tics, Optimization, and Systems Theory, where needed. |                                                                                                                                                                                                                                                                                                                                                           |          |             |          |  |
| Literature                            | <ul> <li>Lecture manuscript</li> <li>Ljung, L. (1999). System Identif</li> <li>Lecture manuscript "System Identification"</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                         | or the U | lser. Prent | ice Hall |  |
| Preliminaries /<br>Previous knowledge | Differential Equations, Systems Theory and Feedback Control                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |          |             |          |  |
| Final Exam                            | Written or oral exam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |          |             |          |  |
| Workload<br>(hours)                   | Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Contact hrs                                                                                                                                                                                                                                                                                                                                               | Self     | -studies    | Total    |  |
|                                       | Lecture and exercises (L+E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60 h                                                                                                                                                                                                                                                                                                                                                      | 1        | 120 h       | 180 h    |  |
| Usability                             | M.Sc. Physics: "Elective Subjects" (SL),<br>M.Sc. Applied Physics: "Applied Physics" (PL or SL) or "Elective Subjects" (SL)                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                           |          |             |          |  |
| Language                              | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                           |          |             |          |  |

#### 3.3.27. Modelling and System Identification (6 ECTS)

| Module<br>07LE33K-ELSUB_APHYS | Elective Subjects 10 ECTS                                                                                                                                                                                                                                                                                                                                                             |           |                                     |           |                             |                |       |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------|-----------|-----------------------------|----------------|-------|
| Responsibility                | Dean of Studies,<br>or Faculty/Institute respor                                                                                                                                                                                                                                                                                                                                       | sible for | selected course                     |           |                             |                |       |
| Courses                       | Type Credit hrs ECTS Assess- S<br>ment                                                                                                                                                                                                                                                                                                                                                |           |                                     |           | Semester                    |                |       |
|                               | Courses in the M.Sc.<br>Applied Physics and/or<br>other M.Sc./M.A. pro-<br>grams by own choice                                                                                                                                                                                                                                                                                        | L+E       | According to<br>selected<br>courses | 10        | SL                          | WiSe +<br>SoSe |       |
|                               | Total:                                                                                                                                                                                                                                                                                                                                                                                |           |                                     | 10        |                             |                |       |
| Required academic assessment  | Subject to selected course                                                                                                                                                                                                                                                                                                                                                            | es        |                                     |           |                             |                |       |
| Grading                       | -                                                                                                                                                                                                                                                                                                                                                                                     |           |                                     |           |                             |                |       |
| Qualification<br>objectives   | The qualification objects                                                                                                                                                                                                                                                                                                                                                             | are subje | ect to the selecte                  | d course. |                             |                |       |
| Course content                | Students select different courses by own choice in order collect at least 10 ECTS credit points in total. The selection may contain lectures of the M.Sc. Applied Physics program, or of the M.Sc./M.A. programs of other disciplines. The examination committee may admit courses of other external programs upon application. The course content is subject to the selected course. |           |                                     |           |                             |                |       |
| Workload<br>(hours)           | Course                                                                                                                                                                                                                                                                                                                                                                                |           | Contact hrs                         | Self      | -studies                    | Total          |       |
| (nours)                       | Elective courses                                                                                                                                                                                                                                                                                                                                                                      |           | subject to selected courses 300 h   |           | subject to selected courses |                | 300 h |
|                               | Total:                                                                                                                                                                                                                                                                                                                                                                                |           | 300 h                               |           |                             |                |       |
| Usability                     | M.Sc. Applied Physics                                                                                                                                                                                                                                                                                                                                                                 |           |                                     |           |                             |                |       |
| Previous knowledge            | Subject to selected courses                                                                                                                                                                                                                                                                                                                                                           |           |                                     |           |                             |                |       |
| Language                      | Subject to selected course                                                                                                                                                                                                                                                                                                                                                            | es        |                                     |           |                             |                |       |

# 3.4. Elective Subjects (10 ECTS credit points)

# 3.5. Term Paper (6 ECTS credit points)

| Module<br>07LE33M-TP            | Term Paper                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                    |               |            |                                                    | 6 ECTS         |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|----------------------------------------------------|----------------|
| Responsibility                  | Dean of Studies,<br>Lecturers of the Institute                                                                                   | e of Physi                                                                                                                                                                                                                                                                                                                                                                                                         | cs            |            |                                                    |                |
| Courses                         |                                                                                                                                  | Туре                                                                                                                                                                                                                                                                                                                                                                                                               | Credit<br>hrs | ECTS       | Assessment                                         | Semester       |
|                                 | Term paper seminar                                                                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                  | 2             | 6          | PL: oral presen-<br>tation and writ-<br>ten report | WiSe +<br>SoSe |
|                                 | Total:                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                    | 2             | 6          |                                                    |                |
| Required academic<br>assessment | adjacent area and prepa                                                                                                          | Students elaborate and give an oral presentation to a specialized physics topic or an adjacent area and prepare a written documentation. Active participation in all presentations of the seminar is expected.                                                                                                                                                                                                     |               |            |                                                    |                |
| Grading                         | A combined grade is giv                                                                                                          | en for the                                                                                                                                                                                                                                                                                                                                                                                                         | e oral presen | itation an | d the written docu                                 | mentation.     |
| Qualification<br>objectives     | <ul><li>tions</li><li>Students are able to front of a broad audie</li><li>Participants have the front of a broad audie</li></ul> | <ul> <li>Students are able to handle scientific literature and to search in scientific publications</li> <li>Students are able to prepare and present a topic of current physical research in front of a broad audience</li> <li>Participants have the skills to lead a discussion in a group of students</li> <li>Students can give scientific lecture and are able to incorporate didactical elements</li> </ul> |               |            |                                                    |                |
| Course content                  | cation and registration to<br>in the first week of the s<br>The <i>Term Paper</i> semina                                         | The research groups of the Institute of Physics offer various seminars each term. Allo-<br>cation and registration to a particular seminar will be in a common event generally held<br>in the first week of the semester.<br>The <i>Term Paper</i> seminar comprises approximately 10 presentations from a coherent<br>field of physics or a neighbouring scientific area.                                         |               |            |                                                    |                |
| Workload<br>(hours)             | Course                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                    | Contact hrs   | Se         | lf-studies                                         | Total          |
|                                 | Term paper seminar                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 h          |            | 159 h                                              | 180 h          |
|                                 | Total:                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 h          |            | 159 h                                              | 240 h          |
| Usability                       | M.Sc. Physics, M.Sc. Ap                                                                                                          | M.Sc. Physics, M.Sc. Applied Physics                                                                                                                                                                                                                                                                                                                                                                               |               |            |                                                    |                |
| Previous knowledge              | Basic knowledge in resp                                                                                                          | Basic knowledge in respective topic as acquired in self-studies or lecture                                                                                                                                                                                                                                                                                                                                         |               |            |                                                    |                |
| Language                        | English                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                    |               |            |                                                    |                |

| 3.6. | Master Laboratory | Applied Physics | (8 ECTS credit points) |
|------|-------------------|-----------------|------------------------|
|------|-------------------|-----------------|------------------------|

| Module<br>07LE33M-MLAB_APHYS    | Master Laborator                                                                                                                                                                                                                                                                                                                          | y Applie | ed Phy             | sics     |                                                                     | 8 ECTS         |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|----------|---------------------------------------------------------------------|----------------|
| Responsibility                  | Head of the master laboratory                                                                                                                                                                                                                                                                                                             |          |                    |          |                                                                     |                |
| Courses                         | Course                                                                                                                                                                                                                                                                                                                                    | Туре     |                    | ECTS     | Assessment                                                          | Semester       |
|                                 | Master Laboratory<br>Applied Physics                                                                                                                                                                                                                                                                                                      | Lab      | -                  | 8        | PL: experi-<br>mental work,<br>written report,<br>oral presentation | WiSe +<br>SoSe |
|                                 | Total:                                                                                                                                                                                                                                                                                                                                    |          |                    | 8        |                                                                     |                |
| Organisation                    | The Master Laboratory Applied Physics consists of the successful accomplishment of different laboratory experiments. In total, all experiments comprise an on-site workload of 16 full days (with 2 days corresponding to 1 ECTS credit point).                                                                                           |          |                    |          |                                                                     |                |
| Required academic<br>assessment | For each experiment the students have to prepare the scientific background, which is tested in an initial written and oral exam, The students perform each experiment in teams of two and prepare written lab report. For some experiments an oral presentation of their results is requested.                                            |          |                    |          |                                                                     |                |
| Grading                         | For each of the experiments a grade is given based on an initial written and oral ques-<br>tioning (test of the preparatory knowledge), the experimental performance and the writ-<br>ten report (incl. lab report and analysis). All marks contribute equally to the final module<br>grade (arithmetic mean).                            |          |                    |          |                                                                     |                |
| Repetition                      | If individual experiments have to be repeated a date has to be arranged with the re-<br>spective supervisor of the experiment.                                                                                                                                                                                                            |          |                    |          |                                                                     |                |
| Qualification<br>objectives     | <ul> <li>Students are able to perform complex advanced experiments running over several days</li> <li>Students are able to apply advanced statistical data analysis methods</li> <li>Students are able to prepare a written lab report</li> <li>Students are able to critically evaluate and assess their experimental results</li> </ul> |          |                    |          |                                                                     |                |
| Course content                  | The current catalogue of laboratory experiments is available online on <a href="http://www.physik.uni-freiburg.de/studium/labore">http://www.physik.uni-freiburg.de/studium/labore</a>                                                                                                                                                    |          |                    |          |                                                                     |                |
| Workload<br>(hours)             | Course                                                                                                                                                                                                                                                                                                                                    | Cor      | ntact hrs          | Se       | lf-studies                                                          | Total          |
|                                 | Master Laboratory<br>Applied Physics                                                                                                                                                                                                                                                                                                      |          | 120 h<br>ays*7.5 h | )        | 120 h                                                               | 240 h          |
|                                 | Total:                                                                                                                                                                                                                                                                                                                                    |          | 150 h              |          | 90 h                                                                | 240 h          |
| Usability                       | M.Sc. Applied Physics                                                                                                                                                                                                                                                                                                                     | I        |                    | <b>I</b> | I                                                                   |                |

| Previous knowledge | <ul> <li>Experimental skills as acquired e.g. in the Physics Laboratory B (B.Sc. Physik)</li> <li>Statistical methods of data analysis</li> </ul> |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Language           | English                                                                                                                                           |

# 3.7. Research Traineeship (30 ECTS credit points)

| Module<br>07LE33M-RTRAIN        | Research Traineeship30 ECTS                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|--|--|
| Responsibility /<br>Supervision | Dean of Studies,<br>Group leaders at the Institute of Physics                                                                                                                                                                                                                                                                                                                                                | Dean of Studies,<br>Group leaders at the Institute of Physics and associated Institutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            |  |  |
| Course details                  | Туре                                                                                                                                                                                                                                                                                                                                                                                                         | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | Assessment |  |  |
|                                 | Research (under supervision)                                                                                                                                                                                                                                                                                                                                                                                 | 6 months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 | SL         |  |  |
| Organisation                    | plished in a six-month period. The aim of<br>a certain research topic and field in prep<br>the traineeship, students select a super<br>associated and participating research in<br>The research traineeship can be start                                                                                                                                                                                     | Prior to their Master thesis students engage in a Research Traineeship which is accomplished in a six-month period. The aim of this module is to acquire basic knowledge in a certain research topic and field in preparation for the subsequent Master Thesis. For the traineeship, students select a supervisor at the Institute of Physics or at one of the associated and participating research institutes. The research traineeship can be started any time and has a duration of exactly 6 months. The students have to register for the research traineeship at the examination office. |    |            |  |  |
| Grading                         | ungraded                                                                                                                                                                                                                                                                                                                                                                                                     | ungraded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |            |  |  |
| Qualification<br>objectives     | <ul> <li>Students know and are able to app<br/>and methods in a specialised field</li> </ul>                                                                                                                                                                                                                                                                                                                 | <ul> <li>Students have a specialized basic knowledge in a certain research topic.</li> <li>Students know and are able to apply specific experimental and/or theoretical tools and methods in a specialised field of research.</li> <li>Students are prepared for performing a self-dependent research project (preparation for Master Thesis)</li> </ul>                                                                                                                                                                                                                                        |    |            |  |  |
| Course content                  | <ul> <li>Students acquire basic knowledge in a certain field of research in preparation for their Master Thesis.</li> <li>Participants obtain training in applying experimental and/or theoretical tools in a specialized field of research.</li> <li>Students participate in a current research project under the supervision of lecturers and researchers (post-docs and doctoral researchers).</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |  |  |
| Workload<br>(hours)             | 900 h distributed over a six-month period                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |  |  |
| Usability                       | M.Sc. Physics, M.Sc Applied Physics                                                                                                                                                                                                                                                                                                                                                                          | M.Sc. Physics, M.Sc Applied Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |            |  |  |
| Precondition                    | Admission to the Research Traineeship requires successful accomplishment of the module <i>Master Laboratory</i> and of three of the four marked courses (AR) of the modules <i>Advanced Quantum Mechanics</i> , <i>Advanced Physics 1, Advanced Physics 2,</i> and <i>Term Paper</i> .                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |  |  |
| Language                        | English                                                                                                                                                                                                                                                                                                                                                                                                      | English                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |            |  |  |

# 3.8. Master Thesis (30 ECTS credit points)

| Module<br>07LE33M-MSC           | Master Thesis                                                                                                                                                                                            | Master Thesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                       |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------|--|--|
| Responsibility /<br>Supervision | Group leaders at the Institute of Physics ar                                                                                                                                                             | Group leaders at the Institute of Physics and associated Institutes                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                       |  |  |
| Module details                  | Туре                                                                                                                                                                                                     | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | Assessment            |  |  |
|                                 | Master Thesis                                                                                                                                                                                            | 6 months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28 | PL: final thesis      |  |  |
|                                 | Master Colloquium                                                                                                                                                                                        | 45 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2  | SL: oral presentation |  |  |
|                                 | Total:                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30 |                       |  |  |
| Organisation                    | of the associated and participating researce<br>pursued within the same work group as the<br>the latest 2 weeks after successful complete                                                                | For their master thesis students select a supervisor at the Institute of Physics or at one of the associated and participating research institutes. Typically, the master thesis is pursued within the same work group as the traineeship. The Master Thesis starts at the latest 2 weeks after successful completion of the Research Traineeship. Registration has to be arranged with the examination office.                                                                                                                                |    |                       |  |  |
| Grading                         |                                                                                                                                                                                                          | The final thesis is graded by two examiners. One examiner is the supervisor of the thesis. Both grades contribute equally to the final grade (arithmetic mean).                                                                                                                                                                                                                                                                                                                                                                                |    |                       |  |  |
| Qualification<br>objectives     | <ul> <li>Students have a strong expertise in ap<br/>ical tools and methods in their field of</li> <li>Students are able to perform independ<br/>assess their scientific results.</li> </ul>              | • Students can search and read scientific literature and apply and relate reported                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                       |  |  |
| Module content                  | <ul> <li>Working on a particular problem in a s</li> <li>Development of the required experime</li> <li>Preparation of a written report on the p</li> <li>Preparation and performance of an or</li> </ul> | <ul> <li>Acquiring in-depth knowledge in the field of the master thesis work.</li> <li>Working on a particular problem in a specialized field of research.</li> <li>Development of the required experimental and/or theoretical tools and methods.</li> <li>Preparation of a written report on the performed research work.</li> <li>Preparation and performance of an oral presentation in the form of a public colloquium, discussing the topic of the master thesis, its physical context, and the underlying physical concepts.</li> </ul> |    |                       |  |  |
| Workload<br>(hours)             | 900 h distributed over a six-month period. This workload includes research, preparation of the written thesis and preparation of the final presentation.                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                       |  |  |
| Usability                       | M.Sc. Physics, M.Sc Applied Physics                                                                                                                                                                      | M.Sc. Physics, M.Sc Applied Physics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |                       |  |  |
| Precondition                    | Admission to the Master Thesis requires successful accomplishment of the module <i>Research Traineeship</i> .                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                       |  |  |
| Language                        | English or German                                                                                                                                                                                        | English or German                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       |  |  |